cord blood type 1 diabetes | what is the difference between banking cord blood and cord tissue

Umbilical cord blood units are made available for research studies intended to improve patient outcomes, as stated in the Stem Cell Therapeutic and Research Act of 2005, Public Law 109-129, and the Stem Cell Therapeutic and Research Reauthorization Act of 2010, Public Law 111-264.
Private cord blood banking can benefit those with a strong family history of certain diseases that harm the blood and immune system, such as leukemia and some cancers, sickle-cell anemia, and some metabolic disorders. Parents who already have a child (in a household with biological siblings) who is sick with one of these diseases have the greatest chance of finding a match with their baby’s cord blood. Parents who have a family history of autism, Alzheimer’s, and type 1 diabetes can benefit from cord blood. Although these diseases aren’t currently treated with umbilical cord steam cells, researchers are exploring ways to treat them (and many more) with cord blood.





Donating your baby’s cord blood is a wonderful gift. The cells may be the perfect match for someone in desperate need of a stem cell transplant. Unfortunately, cord blood banking is still an extremely new industry; there are only a small handful of public banks in certain regions, and those banks are primarily focused on collecting cord blood stem cells from Hispanic and African American families due to the genetic diversity associated with those families. Please visit http://www.marrow.org/ for a list of public banks with their contact information. One other note: It is also a wonderful gift to be a bone marrow donor, and becoming one is much more available to the public, unlike cord blood banking. Please call your local blood bank or the American Red Cross for additional information on how to become a bone marrow donor.
Current trials show promise for cord blood in the treatment of strokes, heart disease, diabetes and more. Umbilical cord–derived stem cells, meanwhile, are undergoing clinical trials for the treatment of multiple sclerosis, sports-related injuries and various neurodegenerative diseases including ALS (known also as Lou Gehrig’s disease) and Alzheimer’s.
Our secure facility is strengthened by bullet resistant glass, a floor load capacity that can hold 800,000 pounds (16x the standard requirements), a liquid nitrogen tank the size of a 747 jet, one of the largest back-up generators available, and temperature monitoring every 1.6 seconds.
Our annual storage fee is due every year on the birth date of the child and covers the cost of storage until the following birthday. The fee is the same $150 for both our standard and our premium cord blood services. The annual cord tissue storage fee is an additional $150.
An alternative to a related donor involves seeking unrelated HLA-matched adult allogeneic donors outside of the family.2,6,11 There are more than 7 million potential unrelated volunteer adult donors registered in the National Marrow Donor Program registry.17 Although the number of patients who receive unrelated adult allogeneic donor stem cell transplants continues to increase each year, many patients are unable to find a fully matched donor, which diminishes access to transplantation therapy. Nonwhite patients have a lower chance of identifying a fully matched unrelated adult donor because of genetic heterogeneity and lack of nonwhite donors. Over the past decade, unrelated-donor, banked umbilical cord blood has been shown to contain sufficient numbers of stem cells for successful transplantation between unrelated, partially HLA-mismatched individuals.19–23 With advances in the clinical practice of cord blood transplantation, most patients unable to find a fully matched adult donor can identify a partially matched cord blood donor.
The baby’s cord blood will be processed and stored in a laboratory facility, often referred to as a blood bank. The cord blood should be processed and stored in a facility that is accredited by the American Association of Blood Banks (AABB) for the purpose of handling stem cells.
As a trusted resource for families, CBR offers Genetic Counselors on staff to help families make informed choices about newborn stem cell banking. Our team of certified professionals are available to:
Cairo MS, Wagner EL, Fraser J, et al. Characterization of banked umbilical cord blood hematopoietic progenitor cells and lymphocyte subsets and correlation with ethnicity, birth weight, sex, and type of delivery: a Cord Blood Transplantation (COBLT) Study report. Transfusion.2005;45 :856– 866
4. Parkinson’s disease. Stem cells may also help those who suffer from Parkinson’s, a neurodegenerative disorder that can cause tremors, stiffness, and other movement and speech problems. Studies show that embryonic stem cells can give rise to the dopamine-making neurons that Parkinson’s patients lack. When transplanted into rodents with a Parkinson’s-like disorder, those replacement brain cells improved the animals’ motor function.
Using their banked cord blood stem cells, ViaCord families participate in ongoing IND approved research including autism, cerebral palsy, & brain injury. Over 150 families have participated in ongoing research.
An accredited lab. In the United States, the FDA requires all public banks to have a Biologics License Application, but not private banks, though they are registered and inspected. Both public and private banks should have extra accreditation, which means banks are evaluated for the quality and accuracy of work. The two companies that handle accreditation are the American Association of Blood Banks (AABB) and the Foundation for the Accreditation of Cellular Therapy (FACT). Look for a bank with its own lab (some banks use labs at other banks), which means more regular quality control and testing standards.
Given the difficulty in estimating the need for using one’s own cord blood cells for transplantation, private storage of cord blood as “biological insurance” is unwise. However, banking should be considered if there is a family member with a current or potential need to undergo a stem cell transplantation.
Cord blood–banking recruitment practices should be developed with an awareness of the possible emotional vulnerability of pregnant women and their families and friends. Efforts should be made to minimize the effect of this vulnerability on cord blood–banking decisions.
Maschan AA, Trakhtman PE, Balashov DN, et al. Fludarabine, low-dose busulfan and antithymocyte globulin as conditioning for Fanconi anemia patients receiving bone marrow transplantation from HLA-compatible related donors. Bone Marrow Transplant.2004;34 :305– 307
Currently, cord blood stem cells have been approved by the FDA in the treatment nearly 80 diseases. In addition to these approved regenerative therapies, there are close to 350 clinical trials underway investigating the use of umbilical cord blood and umbilical cord tissue for stem cell transplantation, and this number promises to steadily increase. Cord blood stem cells are approved for numerous types of malignancies, anemias, inherited metabolic disorders and deficiencies of the immune system. The majority of cord blood transplants to date have been performed in patients younger than 18 years; however, advancements in regenerative medicine show promise for all ages. See all the diseases currently being treated.
Many expectant parents would love the opportunity to bank their baby’s cord blood and cord tissue, but with an initial fee of $1600–$1800 for a quality service and an annual fee of $150–$175, the cost of banking cord blood may seem out of reach. At Cryo-Cell, we are committed to offering a high standard of service at the best price possible, with absolutely no unexpected fees or hidden surcharges. To help keep cord blood banking in everyone’s budget, we offer in-house financing options that begin for as little as $199 down and $128 per month. In addition, we regularly offer specials and have a number of discounts for current clients, referrals, multiple birthes and medical professionals. We will even meet the price of any reputable competitor through our best-price guarantee.
Therapies with cord blood have gotten more successful. “The outcomes of cord blood transplants have improved over the past 10 years because researchers and clinicians have learned more about dosing cord blood, picking better matches, and giving the patient better supportive care as they go through the transplant,” says Joanne Kurtzberg, M.D., director of the pediatric bone marrow and stem cell transplant program at Duke University.
Physicians or other professionals who recruit pregnant women and their families for for-profit placental cord blood stem cell banking should disclose any financial interest or other potential conflict of interest they have in the procedure to their patients.
“This is a medical service that has to be done when your baby’s cells arrive and you certainly want them to be handled by good equipment and good technicians,” says Frances Verter, Ph.D., founder and director of Parent’s Guide to Cord Blood Foundation, a nonprofit dedicated to educating parents about cord blood donation and cord blood therapists. “It’s just not going to be cheap.” Although the American Academy of Pediatrics (AAP) states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does choose to bank cord blood, the AAP recommends public cord blood banking (instead of private) to reduce costs.
Currently, ViaCord has released the most cord blood units for medical transplant and has the highest cord blood transplant survival rate among companies who have disclosed complete transplant data. The one-year survival rate of patients who were treated with ViaCord cord blood units is 88%, and the long-term patient survival rate is 82%.1
Lamaze International (2010) does not have a policy specific to umbilical cord blood banking; however, the organization has a specific policy that prohibits advertising of private cord blood banks in any Lamaze media vehicle. This policy was most recently updated and revised in July 2010. In addition, in their book, The Official Lamaze Guide: Giving Birth With Confidence, Lothian and DeVries (2010) reinforce the AAP’s position that expectant families are vulnerable to the marketing strategies of private cord blood banks. The authors go on to say that expectant parents should know that banking umbilical cord blood does not guarantee a cure. Likewise, there is no guarantee that a private umbilical cord blood bank will be able to adequately preserve the cord blood until a time when it is needed. One potential reason for being unable to preserve the cord blood is that the private cord blood bank could go out of business.
*Fee schedule subject to change without notice. If a client has received a kit and discontinues services prior to collection, there is no cancelation fee if the kit is returned unused within two weeks from cancelation notice; otherwise, a $150 kit replacement fee will be assessed. †Additional courier service fee applies for Alaska, Hawai’i and Puerto Rico. ††Applies to one-year plan and promotional plan only. After the first year, an annual storage fee will apply. Cryo-Cell guarantees to match any written offer for product determined to be similar at Cryo-Cell’s sole discretion. ** Promotional Plan cannot be combined with any other promotional offers, coupons or financing.
Prior to freezing the cells, samples are taken for quality testing. Banks measure the number of cells that are positive for the CD34 marker, a protein that is used to estimate the number of blood-forming stem cells present. Typical cost, $150 to $200 per unit. They also measure the number of nucleated cells, another measure of stem cells, both before and after processing to determine the cell recovery rate. Typical expense, $35 per unit. A portion of the sample is submitted to check that there is no bacterial or fungal contamination. Typical expense, $75 per unit. Public banks will also check the ability of the sample to grow new cells by taking a culture called the CFU assay. Typical expense, $200 to $250 per unit.
Private banking is an alternative option if you can afford the associated costs and if the family’s history suggests a higher probability of need. Families that are predisposed to certain diseases, that are ethnically mixed, or that include a family member who may need a stem cell transplant should take special care to understand the value the cells may provide.
Another advantage of using umbilical cord blood stem cells is the decreased risk of the transmission of infectious disease. This particular advantage is partly because umbilical cord blood is almost never contaminated by Epstein-Barr virus or cytomegalovirus (Drew, 2005; Gonzalez-Ryan et al., 2000). Additionally, the processing of cord blood includes collecting data on the history of infection during the mother’s pregnancy. For example, if the pregnant woman has a history of group B streptococcus, active genital herpes, or prolonged rupture of membranes and chorioamnionitis, umbilical cord blood is not saved. Generally, samples of the mother’s blood are also drawn to test for infectious diseases, such as hepatitis, human immunodeficiency virus, and syphilis (Moise, 2005). Furthermore, after the cord blood units are collected, they are screened for disease, and any units that are deemed contaminated or infected are thrown away (Gunning, 2007).
A few years ago, cord blood was simply discarded as medical waste after a birth.  However, in the past few years, doctors have recognized that the stem cells have unique qualities which can be used in the treatment of certain cancers.  The most common medical use is for transplantation in many situations where bone marrow is considered.  In the future, it is possible that scientists will discover more diseases that can be cured with cord blood.
3. Heart disease. It’s the leading cause of death in the United States, and stem cells may provide some relief. Research is underway to see if injecting the cells into the heart could help regenerate heart muscle damaged by, for example, a heart attack. Again, researchers have reported success in rodents.
So, unfortunately, depending on where you live your overall physical and mental health will vary significantly. Of course, through the right breathing, meditations, and positive thinking we can very much improve our health too, but not many people can or are willing to do that.
Lifebank USA is another private bank, located in Cedar Knolls, New Jersey, that’s accredited by the AABB. What sets this bank apart from the others: it’s one of the few banks that store umbilical cord blood and placenta blood (this is done for free). Stem cells from placenta tissue can turn into skeletal tissue types such as bone, cartilage, fat tissue, and connective tissue, whereas cells from cord blood turn into different types of blood cells.
Yes, if you have any sick children who could benefit from umbilical cord blood. Public banks such as Carolinas Cord Bank at Duke University and private banks such as FamilyCord in Los Angeles offer programs in which the bank will assist with cord blood processing and storage if your baby has a biological sibling with certain diseases. FamilyCord will provide free cord blood storage for one year. See a list of banks with these programs at parentsguidecordblood.org/help.php.
Please tell us a little about yourself. A Newborn Stem Cell Educator may call to discuss your options and answer any questions you may have. You may also receive additional information about saving or donating newborn stem cells.
Some ethical concerns over umbilical cord blood banking warrant mention. As previously stated, the AAP (2007) acknowledges that claims in advertisements for private cord blood banks are not accurate. In fact, some of the statements made by private cord blood banks are outright misleading (Fox et al., 2007), which raises questions about how informed consent for cord blood collection is obtained. Legally, the cord blood belongs to the child, but the consent of the mother alone is usually obtained for collection, and the consent of the father is rarely considered (Ballen, 2006). Because the cord blood now has a “value,” the person who obtains consent and that same person’s professional connection to the private cord blood bank may come into question (Pinch, 2001).
2 Cordblood.com, (2014). Cord Blood Stem Cell Banking | Cord Blood Registry | CBR. [online] Available at: http://www.cordblood.com/cord-blood-banking-cost/cord-blood-stem-cells [Accessed 22 March. 2017].
Proponents of cord blood banking are convinced that instead of being medical waste, the fetal cells within are biological gold. In this post, and the two that follow, I’ll take a look at the evidence for those claims, and sort through some of the questions that arise as parents consider whether to bank their baby’s cord blood.
Your baby’s cord blood could be a valuable resource for another family.  From foundations to non-profit blood banks and medical facilities, there are numerous locations that will collect, process, and use the stem cells from your baby’s cord blood to treat other people.

3 Replies to “cord blood type 1 diabetes | what is the difference between banking cord blood and cord tissue”

  1. For families that choose to bank cord blood, the American Academy of Pediatrics (AAP) recommends public cord blood banking. Estimates vary, but the chances of a child having a stem cell transplant, with either bone marrow or cord blood, are 1 in 217 over a lifetime. Although the AAP states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does decide on cord blood banking, the AAP recommends public cord blood banking (instead of private) to cut down on costs. If you donate cord blood and your child eventually needs it, you can get it back as long as it hasn’t been discarded or used.
    Research on stem cell transplants began in the 1950s, with successful bone marrow transplants occurring in the 1970s, often to treat cancer patients whose own bone marrow was destroyed by chemotherapy and radiation. The first successful umbilical cord blood stem cell transplant was reported as occurring in the late 1980s. The recipient was a 6-year-old American boy from North Carolina who was treated for Fanconi’s anemia (a genetic disorder) at Hospital St. Louis in Paris, France, using cord blood obtained from his younger sister’s birth. Interestingly, more than 20 years after the transplant, this young man is alive and well. Not only did he survive long term, but both his immune system and his blood were transformed by the transplant of his sister’s cord blood stem cells. Soon after this first documented cord blood stem cell transplant, the first public umbilical cord blood bank was established in 1991 in New York (McGuckin & Forraz, 2008).
    As a result of these advances, it is not unreasonable to hope that cord blood may eventually be used to treat a wider variety of auto-immune and degenerative diseases than is currently being done. If so, (and there are solid indications by researchers that this indeed is the case), it makes perfect sense to consider private cord blood banking.
    The Cord Blood Registry (CBR) is unique, because it is currently the world’s largest cord blood bank, with over a half-million cord blood and cord tissue units stored to date. This is substantially more than its nearest competitor, ViaCord, which has 350,000 units stored. It was recently acquired by pharmaceutical giant, AMAG Pharmaceuticals, for $700 million in June 2015.
    These are diseases for which transplants of blood-forming stem cells (Hematopoietic Stem Cell Transplants, HSCT) are a standard treatment. For some diseases they are the only therapy, and in other diseases they are only employed when front-line therapies have failed or the disease is very aggressive. The lists below include ALL therapies that use blood-forming stem cells, without distinction as to whether the stem cells were extracted from bone marrow, peripheral blood, or cord blood.
    Cord blood can only be collected at birth, that’s why it’s important to do your research well before your baby’s due date. Watch this short video to learn exactly how cord blood is collected, processed and stored.
    This web page was researched by Frances Verter, PhD, Alexey Bersenev, MD PhD, and Pedro Silva Couto, MSc ©2016-2018. Sources of information about established therapies were publications in the medical literature found via PubMed and Google Scholar. Sources of clinical trials were searches of ClinicalTrials.gov, Chinese Clinical Trial Registry (ChiCTR), Japan University hospital Medical Information Network Clinical Trial Registry (UMIN-CTR), Japan Medical Association Clinical Trial Registry (JMA-CTR), Clinical Research Information Service from South Korea (CRiS), EU Clinical Trials Register (EudraCT), World Health Organization International Clinical Trials Registry Platform (ICTRP), Netherlands Trial Register (NTR), Australian New Zealand Clinical Trial Registry (ANZCTR), Clinical Trials Registry-India (CTRI), German Clinical Trials Register (DRKS), and Iranian Registry of Clinical Trials (IRCT).
    The term “Cord Blood harvesting” has a slightly morbid sound, but in reality, it is a very worthwhile and potentially lifesaving field of medical science. Umbilical Cord blood is blood that remains in the umbilical cord after birth. This umbilical cord blood is full of stem cells, and these powerful cells can be harvested for use in medical testing, or for transplantation into another host. A transplantation of harvested umbilical cord blood can have a profound effect on the recovery of patients with a host of medical conditions such as leukemia, cancers, thalassemia, Diabetes and some other diseases.
    There are so many things to think about when you have a child. One of them is the blood from your baby’s umbilical cord (which connects the baby to the mother while in the womb). It used to be thrown away at birth, but now, many parents store the blood for the future health of their child. Should you do it?

  2. Your child may never need it. Stem cell-rich cord blood can be used to treat a range of diseases, but Frances Verter, Ph.D., founder and director of Parent’s Guide to Cord Blood Foundation, estimates that there’s only a 1 in 217 chance that your child will ever need a stem cell transplant with cord blood (or bone marrow). This is particularly true if the child doesn’t have a family history of diseases such as leukemia, lymphoma, or sickle cell anemia. Although the American Academy of Pediatrics (AAP) states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does choose to bank cord blood, the AAP recommends public cord blood banking (instead of private) to cut down on expenditures.
    || Payment Plan Disclosures for CareCredit 48-Month Plan – Availability subject to credit approval. $1,650 or as low as $46 per month. If you pay only the minimum amount it will take you 48 months to pay off the balance and $2,201 total. A 14.90% Extended Payment Plan for 48 Months on purchases of $1,000 or more with your CareCredit card. Fixed minimum monthly payments required. Penalty APR may apply if you make a late payment. On promo purchase, fixed monthly payments equal to 4.8439% of initial purchase balance for 24 months; 3.4616% of initial purchase balance for 36 months; 2.7780% of initial purchase balance for 48 months required, and interest charges will be applied to promo balance at a reduced 14.90% APR if (1) promo purchases paid in full in promotion duration as indicated, and (2) all minimum monthly payments on account paid when due. Purchase APR of up to 29.99% applies to expired promotions and optional charges.
    Most of the diseases for which HSCT is a standard treatment are disorders of blood cell lineage. The proliferation by which blood cells are formed from stem cells is illustrated in the side graphic (click on the image to expand it); you can also read about specific cell types in the immune system in more detail. In the United States, most health insurance providers will pay for a stem cell transplant if it is a “standard therapy” for the patient’s diagnosis.
    Umbilical cord blood was once thought of as a waste product of the birthing experience, but now it is valued for its content of stem cells. Today, more than 20 years after the first successful umbilical cord blood stem cell transplant, more families are seeking information about whether or not to invest in saving their newborn’s umbilical cord blood. Saving the cord blood in public banks is a worthy undertaking for any family. It is recommended that expectant families only consider cord blood banking in private banks when they have a relative with a known disorder that is already treatable by stem cell transplants. Moreover, expectant families should not rely on commercial cord blood banks as their sole source of information about cord blood banking.
    In recent years, umbilical cord blood, which contains a rich source of hematopoietic stem and progenitor cells, has been used successfully as an alternative allogeneic donor source to treat a variety of pediatric genetic, hematologic, immunologic, and oncologic disorders. Because there is diminished risk of graft-versus-host disease after transplantation of cord stem cells using matched related donors, the use of less-than-completely matched HLA cord blood stem cells may incur less risk of graft-versus-host disease than mismatched cells from either a related or unrelated “walking” donor, although this remains to be proven. Gene-therapy research involving modification of autologous cord blood stem cells for the treatment of childhood genetic disorders, although experimental at the present time, may prove to be of value. These scientific advances have resulted in the establishment of not-for-profit and for-profit cord blood–banking programs for allogeneic and autologous cord blood transplantation. Many issues confront institutions that wish to establish or participate in such programs. Parents often seek information from their physicians about this new biotechnology option. This document is intended to provide information to guide physicians in responding to parents’ questions about cord blood donation and banking and the types and quality of cord blood banks. Provided also are recommendations about appropriate ethical and operational standards, including informed consent policies, financial disclosures, and conflict-of-interest policies for physicians, institutions, and organizations that operate or have a relationship with cord blood–banking programs.
    Parents often complain about cord blood banking costs. This is not an industry where costs can be cut by running a turn-key operation. Each cord blood unit must be individually tested and processed by trained technicians working in a medical laboratory. 

  3. *Fee schedule subject to change without notice. If a client has received a kit and discontinues services prior to collection, there is no cancelation fee if the kit is returned unused within two weeks from cancelation notice; otherwise, a $150 kit replacement fee will be assessed. †Additional courier service fee applies for Alaska, Hawai’i and Puerto Rico. ††Applies to one-year plan and promotional plan only. After the first year, an annual storage fee will apply. Cryo-Cell guarantees to match any written offer for product determined to be similar at Cryo-Cell’s sole discretion. ** Promotional Plan cannot be combined with any other promotional offers, coupons or financing.
    Anthony’s doctors found a match for him through the New York Blood Center’s National Cord Blood Program, a public cord blood bank. Unlike private banks, public banks do not charge to collect cord blood, they charge a patients insurance company when cells are used. And once it is entered in the public system, the blood is available to anyone who needs it.
    5. Alzheimer’s disease. Likewise, embryonic stem cells may come in handy against Alzheimer’s disease, a progressive and deadly disorder that degrades and kills brain cells, leading to memory loss, cognitive decline, and behavioral problems. Stem cells may give rise to new treatments or even, some say, a cure; other experts have expressed skepticism.
    We chose the site of our lab for one reason in particular: safety. As one of the safest cities in the US, Tucson ensures our families’ samples will be protected from natural disaster. Natural disasters, such as hurricanes, tornadoes, and earthquakes, could interrupt consistent long-term storage of stem cells.
    Parents have the option to privately store their newborn’s cord blood stem cells. There are now over a dozen private cord blood banks, and more open every year. Some have their own labs, while others contract with a lab. Cord blood stem cell banking is not a regulated industry; there are no certifications or licensing requirements to open a cord blood bank. Several banks are accredited by the American Association of Blood Banks. Please keep in mind there is a big difference between being accredited by the AABB and being a member of the AABB. To be accredited, the lab must follow strict standards and be inspected by the association.
    Takahashi S, Iseki T, Ooi J, et al. Single-institute comparative analysis of unrelated bone marrow transplantation and cord blood transplantation for adult patients with hematologic malignancies. Blood.2004;104 :3813– 3820
    If you intend donating umbilical cord blood for preservation and later use, you should let your doctor know by your 34th week so that they can help make any arrangements with a cord blood bank. Once you and your doctor have decided on which cord blood bank to use, you will often be sent informational reading materials from the cord blood bank for further education regarding the process of cord blood harvesting.

Leave a Reply

Your email address will not be published. Required fields are marked *