cord blood for siblings | cover letter for a cord blood tech

Cord blood can’t be used to treat everything. If your child is born with a genetic condition such as muscular dystrophy or spina bifida, then the stem cells would have that condition, says Dr. Kurtzberg. But if the cord blood donor is healthy and there is a sibling or another immediate family member who has a genetic condition, the cord blood could be a good match for them.
A person will always be a 100% match to his or her cord blood, which is the best fit as there are some conditions that can only be treated with one’s own cord blood stem cells (or a perfect match). However, other conditions can be treated using donor stem cells that are partial genetic matches.
Because of their ability to regenerate, umbilical cord stem cells may provide the answers to conditions such as various forms of heart disease and diabetes. Medical researchers studying umbilical cord blood stem cells have recorded several positive observations in animal studies, including instances where cord blood stem cells have improved vascular functions in injured tissue, as well as blood flow and improved overall heart function.
1. As today’s children grow up and some of them develop cancer as adults, autologous (self) cord blood transplants will become more commonly used. Pediatric cancers and adult cancers are completely different diseases at the cellular level (to learn more about cancer visit the website of the National Cancer Institute). While pediatric cancer patients rarely receive autologous transplants, among adult cancer patients the autologous transplants are more common than transplants from donors.
To explain why cord blood banking is so expensive in the United States, we wrote an article with the CEO of a public cord blood bank that lists the steps in cord blood banking and itemizes the cost of each one.
Currently, ViaCord has released the most cord blood units for medical transplant and has the highest cord blood transplant survival rate among companies who have disclosed complete transplant data. The one-year survival rate of patients who were treated with ViaCord cord blood units is 88%, and the long-term patient survival rate is 82%.1
Ravindranath Y, Chang M, Steuber CP, et al. Pediatric Oncology Group (POG) studies of acute myeloid leukemia (AML): a review of four consecutive childhood AML trials conducted between 1981 and 2000. Leukemia.2005;19 :2101– 2116
10. Organ failure. What better way to ease the shortage of organs for transplantation than to grow new ones? That’s what some scientists think, and with stem cells, that vision may become more than a pipe dream. Last year, researchers grew a beating rat heart in the lab with the help of heart cells from newborn rats, preliminary proof of the concept.
Wall DA, Carter SL, Kernan NA, et al. Busulfan/melphalan/antithymocyte globulin followed by unrelated donor cord blood transplantation for treatment of infant leukemia and leukemia in young children: the Cord Blood Transplantation study (COBLT) experience. Biol Blood Marrow Transplant.2005;11 :637– 646
Donating your baby’s cord blood is a wonderful gift. The cells may be the perfect match for someone in desperate need of a stem cell transplant. Unfortunately, cord blood banking is still an extremely new industry; there are only a small handful of public banks in certain regions, and those banks are primarily focused on collecting cord blood stem cells from Hispanic and African American families due to the genetic diversity associated with those families. Please visit http://www.marrow.org/ for a list of public banks with their contact information. One other note: It is also a wonderful gift to be a bone marrow donor, and becoming one is much more available to the public, unlike cord blood banking. Please call your local blood bank or the American Red Cross for additional information on how to become a bone marrow donor.
The Cord Blood Registry (CBR) is unique, because it is currently the world’s largest cord blood bank, with over a half-million cord blood and cord tissue units stored to date. This is substantially more than its nearest competitor, ViaCord, which has 350,000 units stored. It was recently acquired by pharmaceutical giant, AMAG Pharmaceuticals, for $700 million in June 2015.
2. Diabetes. For the many Americans with type 1 diabetes, whose insulin-making pancreatic cells have been killed off by their immune system, stem cells may be the answer. Last year, scientists reported that they had coaxed human embryonic stem cells into becoming insulin-producing, blood sugar-regulating cells in diabetic mice. The aim: to someday do the same for people.
Patients with leukemia, lymphoma, or certain inherited metabolic or immune system disorders have diseased blood-forming cells. For some patients, an umbilical cord blood or bone marrow transplant (also called a BMT) may be their best treatment option.
A number of private for-profit companies have been established that encourage parents to bank their children’s cord blood for their own autologous use or for directed donor allogeneic use for a family member should the need arise. Parents have been encouraged to bank their infants’ cord blood as a form of “biological insurance.” Physicians, employees, and/or consultants of such companies may have potential conflicts of interest in recruiting patients because of their own financial gain. Annual disclosure of the financial interest and potential conflicts of interest must be made to institutional review boards that are charged with the responsibility of mitigation of these disclosures and risks. Families may be vulnerable to the emotional effects of marketing for cord blood banking at the time of birth of a child and may look to their physicians for advice. No accurate estimates exist of the likelihood of children to need their own stored cord blood stem cells in the future. The range of available estimates is from 1 in 1000 to more than 1 in 200000.51 The potential for children needing their own cord blood stem cells for future autologous use is controversial presently.51 There also is no evidence of the safety or effectiveness of autologous cord blood stem cell transplantation for the treatment of malignant neoplasms.51 Indeed, there is evidence demonstrating the presence of DNA mutations in cord blood obtained from children who subsequently develop leukemia.52 Thus, an autologous cord blood transplantation might even be contraindicated in the treatment of a child who develops leukemia.
Eapen M, Horowitz MM, Klein JP, et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J Clin Oncol.2004;22 :4872– 4780
While some companies may advertise their cord tissue preservation service as “treatment-ready”, this is a misnomer. In the U.S. there are currently no treatments available that use cord tissue cells. Without knowing what the treatment protocols may look like in the future, preserving the cord tissue sample whole today means that all of the available cell types in this precious resource may be available to your family in the future.
Thanks for your interest in BabyCenter. Our website is set up to ensure enhanced security and confidentiality by using strong encryption. Unfortunately, the browser you’re using doesn’t support TLS 1.1 or 1.2 – the minimum level of encryption required to access our site. To upgrade your browser or security options, please refer to your device or browser manufacturer for instructions.
The main disadvantage of cord blood transplants is that they take at least a week longer to “engraft”, which means repopulate the patient’s blood supply so that cell counts reach minimum acceptable levels.  The longer engraftment time is a risk because it leaves the patient vulnerable to a fatal infection for a longer time.
The primary benefit to cord blood banking is that it provides a type of medical insurance. This insurance is not from a financial perspective, but rather takes the form of having the necessary medical building blocks available should they be needed in the event of certain illnesses and diseases. Those medical building blocks are the stem cells found in umbilical cord blood.
You can also support your local research and academic institutions that are accepting cord blood donations. Stem cell research has become a provocative debate because of the ethical disagreements around embryonic stem cells. UCB avoids the debate entirely while still providing valuable stem cells in the quest to cure disease and mitigate human suffering.
Today, many conditions may be treatable with cord blood as part of a stem cell transplant, including various cancers and blood, immune, and metabolic disorders. Preserving these cells now may provide your family potential treatment options in the future.
7. Lung diseases. From human embryonic stem cells, researchers in Texas have created transplantable sources of lung cells in the lab. Those lung cells could potentially be used to repair damage brought on by a variety of pulmonary conditions or by lung trauma resulting from a car accident, bullet wound, or sports injury. Unpublished studies using such cells have shown promise for tissue repair in mice with acute lung injury, the group reports.
Some financial aid is available for families that opt for private cord blood banking. If you have a sick child who could benefit from umbilical cord blood, some cord blood banks offer programs in which the bank will cover free cord blood processing and storage if the baby has a biological sibling with certain diseases. Certain insurance companies may pitch in if that sibling needs to be treated with the cord blood in the near future, Dr. Verter says.
Cord blood donation should be encouraged when the cord blood is stored in a bank for public use. Parents should recognize that genetic (eg, chromosomal abnormalities) and infectious disease testing is performed on the cord blood and that if abnormalities are identified, they will be notified. Parents should also be informed that the cord blood banked in a public program may not be accessible for future private use.
Additional ethical concerns about umbilical cord blood banking involve the timing of clamping the umbilical cord after birth. Overall, the issue of when to clamp and cut the umbilical cord is controversial. There is no consensus on how early or how late in the birthing process the umbilical cord ought to be clamped and cut, although the cord obviously still provides nourishment and removes waste until it is clamped or spontaneously stops pulsing (Lothian & DeVries, 2010). However, some practitioners might clamp the umbilical cord early in an effort to maximize the amount of cord blood obtained for banking, and thus “short change” the child and allow the infant to become anemic (Drew, 2005).
Private cord blood banks usually charge an enrolment and collection fee ranging from about $775 to $2,150, plus annual storage fees ranging from about $85 to $150. Some banks include the first year’s storage as part of your initial payment and lower your annual payment if you put down more money initially.
Check if the cord blood bank you’re considering is accredited with the American Association of Blood Banks (AABB). AABB is an international, not-for-profit organization that has been setting standards for both public and private cord blood banking companies for over 20 years. LifebankUSA is registered with the FDA and accredited by AABB. Click here for a list of AABB-accredited cord blood banking companies in the U.S. and around the world.
Description:   MAZE Cord Blood Laboratories provides a low cost cord blood banking option but maintains a high quality and level of service.  They keep costs down by limiting their marketing spend and relying on referrals.





Osteopetrosis is a genetic disease, so this means that doctors could use a sibling’s cord blood cells to treat Anthony, but they cannot use his own cells because the disease is in every cell in his body. In fact, a majority of the diseases listed in private banking firms’ marketing material as treatable with stem cells are genetic diseases.
Throughout the last few years, cord blood banking has turned out to be one of the most viable and commendable medical advancements. Wondering what is cord blood? Well, this is the blood extracted from the baby’s umbilical cord. The entire procedure, during which the blood is extracted, turns out to be painless and safe both for the child and the mother. On top of that, the baby, his family members, and many other individuals can enjoy high health benefits from the procedure of cord blood banking. So simply read along to know better about cord blood storage as well as overall cord blood banking procedures.
Lewis ID, Almeida-Porada G, Du J, et al. Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood.2001;97 :3441– 3449
ViaCord collaborates with leading research and medical centers across the country to help advance medical treatments using cord blood, discover treatments using cord tissue, and connect families to relevant clinical trials.
Description:  ViaCord, a PerkinElmer company, is an industry leading Cord Blood Collection and Storage company that was established in 1993.  Over the years ViaCord has added services such as Cord Tissue collection & storage, and newborn genetic screening.
As a trusted resource for families, CBR offers Genetic Counselors on staff to help families make informed choices about newborn stem cell banking. Our team of certified professionals are available to:
Shai was a feisty little girl whose mother used her scientific background to search for the best approach to cure her cancer. Shai narrowly escaped death many times, including a recovery that even her doctors considered a miracle, yet she died at dawn on the day that she would have begun kindergarten. Her mother went on to found this website and charity in her memory. Read more…
The process for umbilical cord blood harvesting is straightforward: An obstetrician or doctor harvests the umbilical cord blood at the time of the baby’s birth. Timing is very important, as the umbilical cord blood must be harvested quickly so that the cells remain fresh. The harvested umbilical cord blood should preferably be at least 75 mL to make sure that there is enough cord blood and stem cells to be transplanted at a later stage.

6 Replies to “cord blood for siblings | cover letter for a cord blood tech”

  1. Medical shipping: Some cord blood companies use medical shipping companies to deliver cord blood; these companies guarantee that cord blood is kept a certain temperature and delivered to the facility by a certain time, typically within 24 hours of collection.
    Many private banking proponents think that by storing your baby’s cord blood stem cells, you are positioning your family with a form of biological insurance in the event that your child or a close family member has a treatable disease.
    “Processing” refers to separating the important components of the whole cord blood before cryopreservation. There are many methods used to process cord blood that can achieve the same goal: storing the important cells for potential future use. However, it’s important to point out some differences between methods:
    2 Cordblood.com, (2014). Cord Blood Stem Cell Banking | Cord Blood Registry | CBR. [online] Available at: http://www.cordblood.com/cord-blood-banking-cost/cord-blood-stem-cells [Accessed 22 March. 2017].
    In a number of genetic, hematologic, immunologic, metabolic, and oncologic disorders, reconstitution of bone marrow (transplantation) can be a potentially life-saving procedure.1–16 Allogeneic (related or unrelated) or autologous (self) bone marrow or peripheral blood stem cells are the usual sources of hematopoietic progenitor cells to achieve this goal. If autologous stem cells are not available or cannot be used, the best option for successful reconstitution therapy is to secure stem cells from an HLA-matched sibling.1,3,11 Close matching confers a higher probability of successful engraftment and minimizes the risk of potentially fatal graft-versus-host disease. Unfortunately, there is only a 25% chance for identifying a full HLA match in a sibling donor.17,18
    * Disclaimer: Banking cord blood does not guarantee that treatment will work and only a doctor can determine when it can be used. Cord tissue stem cells are not approved for use in treatment, but research is ongoing. 
    Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med.1989;321 :1174– 1178
    The syringe or bag should be pre-labeled with a unique number that identifies your baby. Cord blood may only be collected during the first 15 minutes following the birth and should be processed by the laboratory within 48 hours of collection.
    Current trials show promise for cord blood in the treatment of strokes, heart disease, diabetes and more. Umbilical cord–derived stem cells, meanwhile, are undergoing clinical trials for the treatment of multiple sclerosis, sports-related injuries and various neurodegenerative diseases including ALS (known also as Lou Gehrig’s disease) and Alzheimer’s.
    Well, this is how the entire procedure of cord blood banking. Right after the blood is extracted, it is sent for to the bank. In the bank, the cord blood is checked, tested, processed and finally preserved. This preservation is ensured by controlled freezing under high end freezing conditions. Certain private banks collect a certain segment of the umbilical cord along with the cord blood. The umbilical cord tissue contains various stem cells that are quite different from the general cord blood cells. Research experts are studying in order to understand the possible use of the stem cells in medicine.

  2. You’ve just visited the doctor and the good news is that you’re going to have a baby and everything looks good. Thirty years ago, your doctor may have given you a baby book and information about products that sponsors want you to buy for your new addition. Today, along with pretty much the same materials, you’ll be asked to consider saving the blood of your newborn that’s left over in the umbilical cord and placenta after the delivery. Another big decision, and possibly a costly one.
    Therapies with cord blood have gotten more successful. “The outcomes of cord blood transplants have improved over the past 10 years because researchers and clinicians have learned more about dosing cord blood, picking better matches, and giving the patient better supportive care as they go through the transplant,” says Joanne Kurtzberg, M.D., director of the pediatric bone marrow and stem cell transplant program at Duke University.
    Cord tissue contains a special type of stem cell that has the potential to treat injuries and diseases affecting cartilage, muscle, and nerve cells.19 Since 2007 there have been about 150 clinical trials that have used cord tissue stem cells in human patients.

  3. Cord blood transplants aren’t entirely new — they’ve been in use for about 20 years. In fact, the outcome of transplants has improved in the last 10 years, says Joanne Kurtzberg, M.D., director of the pediatric bone marrow and stem cell transplant program at Duke University.
    Are public banks and family banks the same, except for who may use the cord blood and the cost to the parents? No. Public banks are subject to much higher regulatory requirements, and compliance with regulations carries costs. At a family bank you pay the bank enough to cover the cost of storing your baby’s cord blood, plus they make a profit. When you donate to a public bank, it costs you nothing, but the bank pays more on processing each blood collection than at a family bank. Let’s look at the steps that take place in the laboratory.
    BioInformant is the first and only market research firm to specialize in the stem cell industry. BioInformant research has been cited by major news outlets that include the Wall Street Journal, Nature Biotechnology, Xconomy, and Vogue Magazine. Serving Fortune 500 leaders that include GE Healthcare, Pfizer, and Goldman Sachs. BioInformant is your global leader in stem cell industry data.
    Cairo MS, Wagner EL, Fraser J, et al. Characterization of banked umbilical cord blood hematopoietic progenitor cells and lymphocyte subsets and correlation with ethnicity, birth weight, sex, and type of delivery: a Cord Blood Transplantation (COBLT) Study report. Transfusion.2005;45 :856– 866
    Nagatoshi Y, Kawano Y, Okamura J. Comparison of the outcomes of allogeneic bone marrow transplantation from partially mismatched related donors, matched sibling donors, and matched unrelated donors in Japanese pediatric patients: a single center result. Pediatr Transplant.2004;8 :260– 266
    As you’re making your cord blood bank comparisons, you may want to factor in the stability of the bank. You’re choosing to store your baby’s cord blood in case it might be needed in the future, so you don’t want the bank to go out of business. Parentsguidecordblood.org offers detailed reviews of every public and private cord blood bank in the U.S.
    Transplant science is constantly improving. Several companies are bringing to market methods of “expanding” the stem cell population in the laboratory, and these methods are starting to be applied in clinical trials.
    Cord tissue contains a special type of stem cell that has the potential to treat injuries and diseases affecting cartilage, muscle, and nerve cells.19 Since 2007 there have been about 150 clinical trials that have used cord tissue stem cells in human patients.

  4. The American Congress of Obstetricians and Gynecologists and the American Academy of Pediatrics don’t recommend routine cord blood storage. The groups say private banks should only be used when there’s a sibling with a medical condition who could benefit from the stem cells. Families are encouraged to donate stem cells to a public bank to help others.
    Currently, cord blood stem cells have been approved by the FDA in the treatment nearly 80 diseases. In addition to these approved regenerative therapies, there are close to 350 clinical trials underway investigating the use of umbilical cord blood and umbilical cord tissue for stem cell transplantation, and this number promises to steadily increase. Cord blood stem cells are approved for numerous types of malignancies, anemias, inherited metabolic disorders and deficiencies of the immune system. The majority of cord blood transplants to date have been performed in patients younger than 18 years; however, advancements in regenerative medicine show promise for all ages. See all the diseases currently being treated.
    As a result of these advances, it is not unreasonable to hope that cord blood may eventually be used to treat a wider variety of auto-immune and degenerative diseases than is currently being done. If so, (and there are solid indications by researchers that this indeed is the case), it makes perfect sense to consider private cord blood banking.
    Tracey said she felt lucky since she banked Anthony’s cord blood with a private company. And Osteopetrosis is one of 80 diseases listed by many cord blood companies in their marketing material as treatable with stem cells.
    There are many “what if” situations that we all consider in our life. One of the most serious is “What if a child or other family member was to become seriously ill?” Cord Blood Banking clinics have been growing exponentially in response to this common fear. But should you ever find yourself in this dilemma, what are the pros and cons of using cord blood cells versus other stem cell-related treatments? This article will take a comparative look at some of the key benefits and difficulties as well as the financial costs of cord blood banking.
    Blood naturally starts to clot when its outside the body. An anticoagulant is used to help prevent the cord blood from clotting while it is in transit to the laboratory for processing. CBR deliberately chose to use lyophilized (dry) heparin as the anticoagulant because of some potential advantages, including:
    When all the processing and testing is complete, the cord blood stem cells are frozen in cryogenic nitrogen freezers at -196° C until they are requested for patient therapy. Public banks are required to complete the entire laboratory processing and freeze the cord blood stem cells within 48 hours of collection. This is to insure the highest level of stem cell viability. The accreditation agencies allow family banks a window of 72 hours.
    The blood within your newborn baby’s umbilical cord contains young stem cells that can renew themselves and become specialized. These cord blood stem cells have been proven in treatment to help children replace damaged blood cells with healthy ones and strengthen their immune systems. Cord blood banking is the process of collecting and storing these stem cells for potential medical use.

  5. Parents who wish to donate cord blood are limited by whether there is a public bank that collects donations from the hospital or clinic where their baby will be born. Search our list of public banks in your country. Parents who wish to store cord blood and/or cord tissue for their family can find and compare private banks in your country. Family banks usually offer payment plans or insurance policies to lower the cost of cord blood banking.
    So, unfortunately, depending on where you live your overall physical and mental health will vary significantly. Of course, through the right breathing, meditations, and positive thinking we can very much improve our health too, but not many people can or are willing to do that.
    All cord blood banks in the US are required to register with Food and Drug Administration. To ensure safety, cord blood banks must comply with FDA regulations, including current good tissue practice regulations, donor screening and testing for infectious diseases, including HIV I & II (the virus that causes AIDS), Hepatitis B & C, which can cause liver disease, Cytomegalovirus (CMV) a virus that can lead to pneumonia, Human T-cell Lymphotropic Virus (HTLV) 1 & 2, which can suppress the immune system, West Nile Virus, Zika Virus, Treponema pallidum (the bacterium that can cause syphilis) and Variant Creutzfeldt-Jakob Disease (vCJD), a rare virus that can cause brain disease. Since 2011, the FDA has required public cord blood banks to obtain a license under a Biologics License Application.
    ViaCord collaborates with leading research and medical centers across the country to help advance medical treatments using cord blood, discover treatments using cord tissue, and connect families to relevant clinical trials.

  6. Private cord blood banking can benefit those with a strong family history of certain diseases that harm the blood and immune system, such as leukemia and some cancers, sickle-cell anemia, and some metabolic disorders. Parents who already have a child (in a household with biological siblings) who is sick with one of these diseases have the greatest chance of finding a match with their baby’s cord blood. Parents who have a family history of autism, Alzheimer’s, and type 1 diabetes can benefit from cord blood. Although these diseases aren’t currently treated with umbilical cord steam cells, researchers are exploring ways to treat them (and many more) with cord blood.
    One of the factors that influence engraftment time is cell dose (Gunning, 2007). Cell dose is directly related to the volume of umbilical cord blood collected. Cell dose refers to the amount of useful stem cells in the sample of blood. Because of the limited volume of cells collected from cord blood, the amount of stem cells in cord blood is approximately 10% less than the amount obtained from bone marrow (Moise, 2005). A single unit of umbilical cord blood usually contains 50 to 200 ml of blood (Gonzalez-Ryan et al., 2000). If an amount of cord blood is less than this minimum volume, the unit is discarded as being unsatisfactory because the cell dose of the sample would not be high enough. Collecting an insufficient volume of cord blood occurs in about 50% or more cases of cord blood collection (Drew, 2005). In general, fewer stem cells are needed for cord blood transplantation, and usually a volume of 50 to 100 ml of cord blood will provide enough of a cell dose for a child or small adult. However, should the recipient need additional stem cells, it is impossible to obtain more stem cells from the infant because the cord blood volume is a limited amount (Percer, 2009).
    If you do decide to bank your baby’s cord blood, there’s one more thing to keep in mind: It’s best not to make it a last-minute decision. You should coordinate with the bank before your baby is born so nothing is left to chance.
    !function(e){function n(t){if(r[t])return r[t].exports;var i=r[t]={i:t,l:!1,exports:{}};return e[t].call(i.exports,i,i.exports,n),i.l=!0,i.exports}var t=window.webpackJsonp;window.webpackJsonp=function(n,r,o){for(var s,a,u=0,l=[];u1)for(var t=1;tf)return!1;if(h>c)return!1;var e=window.require.hasModule(“shared/browser”)&&window.require(“shared/browser”);return!e||!e.opera}function a(){var e=o(d);d=[],0!==e.length&&l(“/ajax/log_errors_3RD_PARTY_POST”,{errors:JSON.stringify(e)})}var u=t(“./third_party/tracekit.js”),l=t(“./shared/basicrpc.js”).rpc;u.remoteFetching=!1,u.collectWindowErrors=!0,u.report.subscribe(r);var c=10,f=window.Q&&window.Q.errorSamplingRate||1,d=[],h=0,p=i(a,1e3);n.report=function(e){try{window.console&&console.error(e.stack||e),u.report(e)}catch(e){}};var m=function(e,n,t){r({name:n,message:t,source:e,stack:u.computeStackTrace.ofCaller().stack||[]}),console.error(t)};n.logJsError=m.bind(null,”js”),n.logMobileJsError=m.bind(null,”mobile_js”)},”./shared/globals.js”:function(e,n,t){var r=t(“./shared/links.js”);(window.Q=window.Q||{}).openUrl=function(e,n){var t=e.href;return r.linkClicked(t,n),window.open(t).opener=null,!1}},”./shared/links.js”:function(e,n,t){var r=t(“./shared/errors.js”),i=[];n.onLinkClick=function(e){i.push(e)},n.linkClicked=function(e,n){for(var t=0;t>>0;if(“function”!=typeof e)throw new TypeError;for(arguments.length>1&&(t=n),r=0;r>>0,r=arguments.length>=2?arguments[1]:void 0,i=0;i>>0;if(0===i)return-1;var o=+n||0;if(Math.abs(o)===Infinity&&(o=0),o>=i)return-1;for(t=Math.max(o>=0?o:i-Math.abs(o),0);t>>0;if(“function”!=typeof e)throw new TypeError(e+” is not a function”);for(arguments.length>1&&(t=n),r=0;r>>0;if(“function”!=typeof e)throw new TypeError(e+” is not a function”);for(arguments.length>1&&(t=n),r=new Array(s),i=0;i>>0;if(“function”!=typeof e)throw new TypeError;for(var r=[],i=arguments.length>=2?arguments[1]:void 0,o=0;o>>0,i=0;if(2==arguments.length)n=arguments[1];else{for(;i=r)throw new TypeError(“Reduce of empty array with no initial value”);n=t[i++]}for(;i>>0;if(0===i)return-1;for(n=i-1,arguments.length>1&&(n=Number(arguments[1]),n!=n?n=0:0!==n&&n!=1/0&&n!=-1/0&&(n=(n>0||-1)*Math.floor(Math.abs(n)))),t=n>=0?Math.min(n,i-1):i-Math.abs(n);t>=0;t–)if(t in r&&r[t]===e)return t;return-1};t(Array.prototype,”lastIndexOf”,c)}if(!Array.prototype.includes){var f=function(e){“use strict”;if(null==this)throw new TypeError(“Array.prototype.includes called on null or undefined”);var n=Object(this),t=parseInt(n.length,10)||0;if(0===t)return!1;var r,i=parseInt(arguments[1],10)||0;i>=0?r=i:(r=t+i)<0&&(r=0);for(var o;r

Leave a Reply to Rosanna Cancel reply

Your email address will not be published. Required fields are marked *