cord blood donation texas | cord blood icon

Currently, cord blood stem cells have been approved by the FDA in the treatment nearly 80 diseases. In addition to these approved regenerative therapies, there are close to 350 clinical trials underway investigating the use of umbilical cord blood and umbilical cord tissue for stem cell transplantation, and this number promises to steadily increase. Cord blood stem cells are approved for numerous types of malignancies, anemias, inherited metabolic disorders and deficiencies of the immune system. The majority of cord blood transplants to date have been performed in patients younger than 18 years; however, advancements in regenerative medicine show promise for all ages. See all the diseases currently being treated.
A “clinical trial” is a study in human patients for an emerging therapy that has not been adopted as standard therapy. This website has pages that enable patients to search worldwide for currently recruiting clinical trials with ether cord blood or umbilical cord tissue MSC. The table below checks off all diagnoses that have ever been treated in clinical trials with cord blood or cord tissue, regardless of whether the trials are still open.
CBR works with Quick International, a private courier service with 30 years of experience as the market leader in the transport of cord blood, tissue, organs, and the U.S. blood inventory. CBR offers our clients a unique “Track My Kit” system to provide progress updates as the kit containing the cord blood travels to our lab. If it gets lost or damaged while in transit with Quick International, you are covered by a $2,500 warranty.
A history of releasing cord blood units for therapy. “This shows they’re not just selling contracts to parents — there are doctors who are actually accepting units of cord blood that have been stored there for therapy,” says Frances Verter, Ph.D., founder and director of Parent’s Guide to Cord Blood Foundation, a nonprofit dedicated to educating parents about cord blood donation and cord blood therapists.
As a trusted resource for families, CBR offers Genetic Counselors on staff to help families make informed choices about newborn stem cell banking. Our team of certified professionals are available to:
Four main types of physical conditions are treated with stem cell transplants: cancers, blood disorders, congenital metabolic disorders, and immunodeficiencies (see Table 1). Examples of cancers that are treated with stem cells are both lymphoma and leukemia. Nonmalignant hemologic disorders also account for a fair share of the recipients of stem cells. Examples of these blood disorders are various types of anemias, such as sickle-cell anemia and Fanconi’s anemia (the first disorder treated with umbilical cord blood stem cells). Stem cells have also been used to treat various metabolic disorders, such as adrenoleukodystrophy. The fourth major category of uses for stem cells is in treating immunodeficiencies, such as Duncan’s disease or adenosine deaminase deficiency (Drew, 2005; Moise, 2005).
8. Arthritis. Also called degenerative joint disease, osteoarthritis—the most common form of arthritis—results when protective cartilage in joints wastes away. Once it’s gone, it’s gone for good. Stem cells could change that. Scientists are examining how best to use them to rebuild lost cartilage and repair shot joints.
2. Diabetes. For the many Americans with type 1 diabetes, whose insulin-making pancreatic cells have been killed off by their immune system, stem cells may be the answer. Last year, scientists reported that they had coaxed human embryonic stem cells into becoming insulin-producing, blood sugar-regulating cells in diabetic mice. The aim: to someday do the same for people.
Bunin N, Aplenc R, Leahey A, et al. Outcomes of transplantation with partial T-cell depletion of matched or mismatched unrelated or partially matched related donor bone marrow in children and adolescents with leukemias. Bone Marrow Transplant.2005;35 :151– 158
Private (commercial) cord banks will store the donated blood for use by the donor and family members only. They can be expensive. These banks charge a fee for processing and an annual fee for storage.
Wagner JE, Rosenthal J, Sweetman R, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood.1996;88 :795– 802
Families with a history of diseases can greatly benefit from cord blood banking, as an insurance policy against possible future diseases. However, cord blood banking is expensive, can’t be used to treat everything, and your child may not even need it—at private cord blood banks, most is eventually discarded. Lastly, you should be aware that if the child develops certain genetic diseases, the cord blood will have the same genetic flaws.  
Since 1988, cord blood transplants have been used to treat over 80 diseases in hospitals around the world. Inherited blood disorders such as sickle cell disease and thalassemia can be cured by cord blood transplant. Over the past decade, clinical trials have been developing cord blood therapies for conditions that affect brain development in early childhood, such as cerebral palsy and autism.
Cord tissue use is still in early research stages, and there is no guarantee that treatments using cord tissue will be available in the future. Cord tissue is stored whole. Additional processing prior to use will be required to extract and prepare any of the multiple cell types from cryopreserved cord tissue. Cbr Systems, Inc.’s activities for New York State residents are limited to collection of umbilical cord tissue and long-term storage of umbilical cord–derived stem cells. Cbr Systems, Inc.’s possession of a New York State license for such collection and long-term storage does not indicate approval or endorsement of possible future uses or future suitability of these cells.
The stem cells obtained from umbilical cord blood are also less likely than bone marrow stem cells to be rejected in transplants. Considered to be immunologically immature, umbilical cord blood stem cells produce significantly fewer natural killer cells, creating a substantial decrease in rejection. Consequently, cord blood stem cells require less rigorous antigen tissue matching for transplants than bone marrow stem cells (Sullivan, 2008). Research indicates that a mismatch of up to two antigen sites still provides successful clinical outcomes (Ballen, 2006; Fox et al., 2007). In fact, researchers report that the rate of rejection for cord blood stem cell transplants is half the rate of rejection for bone marrow transplants (Ballen et al., 2001). When compared directly in cases of mismatched antigens, there was clearly less rejection in transplants involving cord blood stem cells than bone marrow stem cells (Moise, 2005).
Thornley I., Eapen M., Sung L., Lee S., Davies S., & Joffe S. (2009). Private cord blood banking: Experiences and views of pediatric hematopoietic cell transplantation physicians. Pediatrics, 123(3), 1011–1017 [PMC free article] [PubMed]





Research on stem cell transplants began in the 1950s, with successful bone marrow transplants occurring in the 1970s, often to treat cancer patients whose own bone marrow was destroyed by chemotherapy and radiation. The first successful umbilical cord blood stem cell transplant was reported as occurring in the late 1980s. The recipient was a 6-year-old American boy from North Carolina who was treated for Fanconi’s anemia (a genetic disorder) at Hospital St. Louis in Paris, France, using cord blood obtained from his younger sister’s birth. Interestingly, more than 20 years after the transplant, this young man is alive and well. Not only did he survive long term, but both his immune system and his blood were transformed by the transplant of his sister’s cord blood stem cells. Soon after this first documented cord blood stem cell transplant, the first public umbilical cord blood bank was established in 1991 in New York (McGuckin & Forraz, 2008).
Insurance assisted payments: Some cord blood companies work with insurance companies that can help parents pay for cord blood processing and storage, particularly if one child in the family has an illness and might be able to benefit from cord blood use.
The cord blood cell recovery data reported by CBR and others is consistently higher than the published, available data of other processing methods including PrepaCyte® and Hespan, when combined with CPD.
At the end of a recent childbirth class, I found two couples engaged in a lengthy discussion. In the course of the conversation, both couples agreed that their goal was to do the best things for their pregnancy and birth. They were attending childbirth classes to learn how to support normal birth. They each were planning to attend breastfeeding classes. As their conversation continued, the first couple described their decision to bank the umbilical cord blood of their yet unborn daughter. They were adamant that their decision was the best action for them because they had a strong family history of myasthenia gravis. They stated that they had researched the issue by talking to several different cord blood banks, and they had decided on one particular bank because it processed the cord blood without the use of the anticoagulant drug, heparin. The couple went on to parrot back the information that the cord blood bank had told them. It was evident that the first couple wanted what was best for their yet unborn child.
Kasamon YL, Jones RJ, Piantadosi S, et al. High-dose therapy and blood or marrow transplantation for non-Hodgkin lymphoma with central nervous system involvement. Biol Blood Marrow Transplant.2005;11 :93– 100
Direct-donation umbilical cord blood banks function as an amalgamation of public and private banks. Direct-donation banks collect cord blood without charging fees. In addition, they accept autogenous donations and reserve them only for the family, especially for a family whose infant has a sibling with a disorder that may be treated with umbilical cord blood stem cells (Moise, 2005).
Private cord blood banks usually charge an enrolment and collection fee ranging from about $775 to $2,150, plus annual storage fees ranging from about $85 to $150. Some banks include the first year’s storage as part of your initial payment and lower your annual payment if you put down more money initially.
Current trials show promise for cord blood in the treatment of strokes, heart disease, diabetes and more. Umbilical cord–derived stem cells, meanwhile, are undergoing clinical trials for the treatment of multiple sclerosis, sports-related injuries and various neurodegenerative diseases including ALS (known also as Lou Gehrig’s disease) and Alzheimer’s.

6 Replies to “cord blood donation texas | cord blood icon”

  1. Lifebank USA is another private bank, located in Cedar Knolls, New Jersey, that’s accredited by the AABB. What sets this bank apart from the others: it’s one of the few banks that store umbilical cord blood and placenta blood (this is done for free). Stem cells from placenta tissue can turn into skeletal tissue types such as bone, cartilage, fat tissue, and connective tissue, whereas cells from cord blood turn into different types of blood cells.
    Childbirth educators may be one of the first resources that an expectant family turns to in order to gain more knowledge to make an informed decision about collecting umbilical cord blood in the birthing process. Therefore, the childbirth educator should be well versed on the topic, so that as questions from class participants arise, the multiple facets of umbilical cord blood banking can be explored.
    Contact Us | Viewers & Players | Privacy Policy | Disclaimers | Accessibility | Freedom of Information Act | No Fear Act | U.S. Department of Health and Human Services | USA.gov | WhiteHouse.gov | Healthcare.gov
    Cord Blood Registry is a cord blood storage company that collects, processes and stores stem cells to help families with medical needs later in life. Founded in 1992, it is the world’s largest newborn stem cell company.

  2. The materials and information included in this electronic newsletter (Newsletter), including advertisements, are provided as a service to you and do not reflect endorsement by the Parent’s Guide to Cord Blood Foundation (the “Foundation”). The Foundation is not responsible for the accuracy and completeness of information provided by guest authors, outside sources, or on websites linked to the Newsletter. The Foundation reserves the right at any time to remove materials and information from the Newsletter without communication with the author or organization. Access to and use of all Newsletter information is at the user’s own risk. The Foundation is not liable for any damages of any kind, nature or description (whether direct, consequential or punitive) arising out of or relating to information referenced in the Newsletter, or related in any way to the user’s access to the Newsletter. The Foundation’s Terms of Use is expressly incorporated herein. Questions can be directed to info@parentsguidecordblood.org.
    Entz-Werle N, Suciu S, van der Werff Ten Bosch J, et al. Results of 58872 and 58921 trials in acute myeloblastic leukemia and relative value of chemotherapy vs allogeneic bone marrow transplantation in first complete remission: the EORTC Children Leukemia Group report. Leukemia.2005;19 :2072– 2081
    The most obvious argument against is that the odds of needing cord blood for medical treatment is very, very slim.  Below is a news release on a policy published in the July,1999 issue of Pediatrics, the peer-reviewed scientific journal of the American Academy of Pediatrics (AAP):
    Our secure facility is strengthened by bullet resistant glass, a floor load capacity that can hold 800,000 pounds (16x the standard requirements), a liquid nitrogen tank the size of a 747 jet, one of the largest back-up generators available, and temperature monitoring every 1.6 seconds.
    This Privacy Policy and Terms of Use sets out how Americord Registry uses and protects any information that you give Americord Registry when you use this website. SequenceDNA TOS provides the current terms of service for those clients that are using Americord’s SequenceDNA Services.

  3. Meredith Women’s Network | Parents.com is part of the Parents Network. © Copyright 2017 Meredith Corporation. All Rights Reserved Privacy Policy – Your California Rights Data Policy Terms of Service EU Data Subject Requests AdChoices
    The American Academy of Pediatrics (AAP) takes the issue of privacy very seriously. See our Privacy Statement for information about how AAP collects, uses, safeguards and discloses the information collected on our Website from visitors and by means of technology.
    All cord blood is screened and tested. Whether you use a public or private bank, you’ll still need to be tested for various infections (such as hepatitis and HIV). If tests come back positive for disease or infection, you will not be able to store your cord blood.

  4. After a baby is born, the umbilical cord and placenta are no longer needed and are usually discarded. However, the blood remaining in the umbilical cord and placenta is rich with blood-forming cells. (These cells are not embryonic stem cells.) By collecting and freezing this blood, the healthy blood-forming cells can be stored and may later be used by a patient who needs them.
    Over 95% of newborns’ cord blood stem cells fall into this category. It is unfortunate that public banking is not readably available and private banking is so expensive. Some industry leaders believe that as the industry grows, banking or donating cord blood will be as common as it is uncommon today.
    Many cord blood banks will also store cord tissue. Research around cord tissue is still in it’s early stages, and while there is little known about the benefits of cord blood tissue, researchers are confident that cord tissue treatments could included repairing damaged tissue, ligaments and organs resulting from burns, ulcers or wounds.
    Lifebank USA is another private bank, located in Cedar Knolls, New Jersey, that’s accredited by the AABB. What sets this bank apart from the others: it’s one of the few banks that store umbilical cord blood and placenta blood (this is done for free). Stem cells from placenta tissue can turn into skeletal tissue types such as bone, cartilage, fat tissue, and connective tissue, whereas cells from cord blood turn into different types of blood cells.
    When parents donate cord blood to a public bank, they are supporting patients around the world who are searching for an unrelated Allogeneic donor. When parents save cord blood in a family bank, they are reserving the options that the baby can use its own stem cells for an Autologous treatment, or an immediate relative (sibling or parents) can use the stem cells for an Allogeneic treatment.
    One of the factors that influence engraftment time is cell dose (Gunning, 2007). Cell dose is directly related to the volume of umbilical cord blood collected. Cell dose refers to the amount of useful stem cells in the sample of blood. Because of the limited volume of cells collected from cord blood, the amount of stem cells in cord blood is approximately 10% less than the amount obtained from bone marrow (Moise, 2005). A single unit of umbilical cord blood usually contains 50 to 200 ml of blood (Gonzalez-Ryan et al., 2000). If an amount of cord blood is less than this minimum volume, the unit is discarded as being unsatisfactory because the cell dose of the sample would not be high enough. Collecting an insufficient volume of cord blood occurs in about 50% or more cases of cord blood collection (Drew, 2005). In general, fewer stem cells are needed for cord blood transplantation, and usually a volume of 50 to 100 ml of cord blood will provide enough of a cell dose for a child or small adult. However, should the recipient need additional stem cells, it is impossible to obtain more stem cells from the infant because the cord blood volume is a limited amount (Percer, 2009).
    It’s incredible how much little we know about the science when it comes down to the almost everything. A group of very open-minded scientists studying and understanding the spiritual laws and the laws of the universe. learned through various experiments how to capture the essence of the sun into the high-quality organic oil.

  5. 4. If your family, especially your children, are of mixed ethnic background, it may be impossible to find an adult bone marrow donor who is a perfect match. In that event, cord blood from even a partially matched sibling would be invaluable if a stem cell transplant is necessary.
    Accreditation agencies and registries have recognized StemCyte™ for its dedication to higher standards and patient care. StemCyte™ is the only private cord blood bank that is both FACT- and AABB-accredited.
    Maschan AA, Trakhtman PE, Balashov DN, et al. Fludarabine, low-dose busulfan and antithymocyte globulin as conditioning for Fanconi anemia patients receiving bone marrow transplantation from HLA-compatible related donors. Bone Marrow Transplant.2004;34 :305– 307

  6. One of the factors that influence engraftment time is cell dose (Gunning, 2007). Cell dose is directly related to the volume of umbilical cord blood collected. Cell dose refers to the amount of useful stem cells in the sample of blood. Because of the limited volume of cells collected from cord blood, the amount of stem cells in cord blood is approximately 10% less than the amount obtained from bone marrow (Moise, 2005). A single unit of umbilical cord blood usually contains 50 to 200 ml of blood (Gonzalez-Ryan et al., 2000). If an amount of cord blood is less than this minimum volume, the unit is discarded as being unsatisfactory because the cell dose of the sample would not be high enough. Collecting an insufficient volume of cord blood occurs in about 50% or more cases of cord blood collection (Drew, 2005). In general, fewer stem cells are needed for cord blood transplantation, and usually a volume of 50 to 100 ml of cord blood will provide enough of a cell dose for a child or small adult. However, should the recipient need additional stem cells, it is impossible to obtain more stem cells from the infant because the cord blood volume is a limited amount (Percer, 2009).
    The stored blood can’t always be used, even if the person develops a disease later on, because if the disease was caused by a genetic mutation, it would also be in the stem cells. Current research says the stored blood may only be useful for 15 years.
    As a result of these advances, it is not unreasonable to hope that cord blood may eventually be used to treat a wider variety of auto-immune and degenerative diseases than is currently being done. If so, (and there are solid indications by researchers that this indeed is the case), it makes perfect sense to consider private cord blood banking.
    To begin a discussion of umbilical cord blood banking, it must first be understood that the component from the blood that is salvaged is the stem cells. Stem cells are unspecialized cells that are the basis of all tissue and organ cells of the body. There are three main sources of stem cells in humans: embryonic stem cells, adult stem cells, and umbilical cord stem cells. Embryonic stem cells are generally used in research but not in clinical practice. Adult stem cells are found in various locations in the human body, but they are most commonly found in bone marrow (McGuckin & Forraz, 2008). Over the years, transplants of bone marrow stem cells have been used clinically to treat disease processes in which stem cells are beneficial. Umbilical cord blood stem cells were historically considered a waste product of the birthing process but are now known to have up to 10 times more stem cells than adult bone marrow (Gunning, 2007).
    Proponents of cord blood banking are convinced that instead of being medical waste, the fetal cells within are biological gold. In this post, and the two that follow, I’ll take a look at the evidence for those claims, and sort through some of the questions that arise as parents consider whether to bank their baby’s cord blood.
    When you’re pregnant, especially for the first time, you have to make a lot of decisions. Will coffee remain a part of your life? Where are you going to give birth? What are you going to name the baby? What values will you teach him? Do you really need a baby spa bathtub?
    When considering cord blood, cord tissue, and placenta tissue banking, you want all of the facts. Americord’s® Cord Blood Comparison Chart gives you information not only on our costs and services, but also on how other companies measure up.

Leave a Reply to Ruben Cancel reply

Your email address will not be published. Required fields are marked *