cord blood cost | newton wellesley hospital cord blood banking

For much of pregnancy, the umbilical cord is the lifeline of a fetus, tethering it to the placenta. Snaking through the nearly 2-feet-long cord, there’s a vein ferrying nutrients and oxygen from mom’s blood (via the placenta), plus two arteries carrying oxygen- and nutrient-depleted blood from the fetus back to mom. Because mother’s blood and fetal blood don’t actually mix much, the blood in the placenta and umbilical cord at birth belongs mainly to the fetus.
We chose the site of our lab for one reason in particular: safety. As one of the safest cities in the US, Tucson ensures our families’ samples will be protected from natural disaster. Natural disasters, such as hurricanes, tornadoes, and earthquakes, could interrupt consistent long-term storage of stem cells.
Lifebank USA is another private bank, located in Cedar Knolls, New Jersey, that’s accredited by the AABB. What sets this bank apart from the others: it’s one of the few banks that store umbilical cord blood and placenta blood (this is done for free). Stem cells from placenta tissue can turn into skeletal tissue types such as bone, cartilage, fat tissue, and connective tissue, whereas cells from cord blood turn into different types of blood cells.
Parents who wish to donate cord blood are limited by whether there is a public bank that collects donations from the hospital or clinic where their baby will be born. Search our list of public banks in your country. Parents who wish to store cord blood and/or cord tissue for their family can find and compare private banks in your country. Family banks usually offer payment plans or insurance policies to lower the cost of cord blood banking.
Marketing materials by Viacord and Cord Blood Registry, the two largest companies, do not mention that cord blood stem cells cannot be used by the child for genetic diseases, although the fine print does state that cord blood may not be effective for all of the listed conditions.
There are three types of umbilical cord blood banks: private, public, and direct-donation banks. The private bank is a commercial, for-profit entity that often advertises directly to expectant parents. These banks are designed for the sole use of the families who have saved the cord blood. Private banks charge an initial fee for collection and processing and, then, a yearly fee to maintain the specimen. Another fee is often charged when a sample is removed for testing or treatment (Moise, 2005).
Another contributor to cord blood banking costs is the quality of the collection kit. Cheaper banks typically use flimsy collection kits. To insure the survival of newborn stem cells, the shipping container should be thermally insulated to maintain kit temperature during cord blood shipments.
Some ethical concerns over umbilical cord blood banking warrant mention. As previously stated, the AAP (2007) acknowledges that claims in advertisements for private cord blood banks are not accurate. In fact, some of the statements made by private cord blood banks are outright misleading (Fox et al., 2007), which raises questions about how informed consent for cord blood collection is obtained. Legally, the cord blood belongs to the child, but the consent of the mother alone is usually obtained for collection, and the consent of the father is rarely considered (Ballen, 2006). Because the cord blood now has a “value,” the person who obtains consent and that same person’s professional connection to the private cord blood bank may come into question (Pinch, 2001).
Anyway, the excitement over the embryonic cells comes from their remarkable ability, as biological blank slates, to become virtually any of the body’s cell types. Many observers believe the president’s move will accelerate the hunt for cures for some of our most vexing diseases. However, the benefits are largely hypothetical, given the infancy of the field, and are offset by some real obstacles: The risks of embryonic stem cells, as well as cells programmed to become like them, including the possibility they will actually cause cancers in people who receive them. Nonetheless, here’s a look at 10 health problems that stem cells might someday cure or at least help treat.
Umbilical cord blood was once thought of as a waste product of the birthing experience, but now it is valued for its content of stem cells. Today, more than 20 years after the first successful umbilical cord blood stem cell transplant, more families are seeking information about whether or not to invest in saving their newborn’s umbilical cord blood. Saving the cord blood in public banks is a worthy undertaking for any family. It is recommended that expectant families only consider cord blood banking in private banks when they have a relative with a known disorder that is already treatable by stem cell transplants. Moreover, expectant families should not rely on commercial cord blood banks as their sole source of information about cord blood banking.
As a trusted resource for families, CBR offers Genetic Counselors on staff to help families make informed choices about newborn stem cell banking. Our team of certified professionals are available to:
The “cell recovery rate” is often used to compare processing methods. Expressed as a percentage, the cell recovery rate tells you how many cells are retrieved from the original cord blood collection, once plasma has been removed and red blood cells have been reduced or removed. It is expected that some cells will be lost during processing, and most processing methods have published cell recovery rates between 80%—99%
M.A.Z.E. Cord Blood Laboratories is an FDA-approved and regulated storage facility that partners with Community Blood Services for processing. The company has processed over 30,000 units of cord blood since opening in 1997.
Throughout the last few years, cord blood banking has turned out to be one of the most viable and commendable medical advancements. Wondering what is cord blood? Well, this is the blood extracted from the baby’s umbilical cord. The entire procedure, during which the blood is extracted, turns out to be painless and safe both for the child and the mother. On top of that, the baby, his family members, and many other individuals can enjoy high health benefits from the procedure of cord blood banking. So simply read along to know better about cord blood storage as well as overall cord blood banking procedures.





Cord blood can be used in the treatment of nearly 80 life-threatening diseases – from cancers to blood disorders. It’s also being used in regenerative medicine research to help kids with conditions like Autism and Cerebral Palsy.
Tom Moore, CEO of Cord Blood Registry, the largest private cord blood banking firm, told ABC News conceded that there was no proof that the transplants worked, but added that there is strong anecdotal evidence.
Contact Us | Viewers & Players | Privacy Policy | Disclaimers | Accessibility | Freedom of Information Act | No Fear Act | U.S. Department of Health and Human Services | USA.gov | WhiteHouse.gov | Healthcare.gov
It depends on who you ask. Although commercial cord blood banks often bill their services as “biological insurance” against future diseases, the blood doesn’t often get used. One study says the chance that a child will use their cord blood over their lifetime is between 1 in 400 and 1 in 200,000.
The American Academy of Pediatrics (AAP, 2007) states that the use of banked umbilical cord blood as “biologic insurance” is unwarranted. The AAP also notes that many of the claims of private cord blood banks are unfounded. Unlike ACOG, the AAP recommends cord blood collection and banking for all families; however, their distinction is that all cord blood should be banked in public banks for use by the general population. In one study, the researchers reported that when pediatric transplant specialists were surveyed, overall, they did not recommend private cord blood banking (Thornley et al., 2009). The AAP recommends private cord blood banking only if a full sibling has a medical diagnosis for which stem cells are currently being used for treatment.
Back in the 1980s, umbilical cord blood caught the attention of researchers who suspected that the often-discarded tissue could be a valuable source of shape-shifting stem cells. These cells, which can become several different types of blood cells, are similar to the specialized stem cells found in bone marrow that can churn out new blood cells. Such stem cells are found in adult blood, too, but not as abundantly.
Save by paying in advance for 21 years of storage through our long-term storage plan. This plan covers all the initial fees (collection kit, courier service, processing, and preservation) and the cost of 21 years of continuous storage. A lifetime plan is also available; call for details.
Your child may never need it. Stem cell-rich cord blood can be used to treat a range of diseases, but Frances Verter, Ph.D., founder and director of Parent’s Guide to Cord Blood Foundation, estimates that there’s only a 1 in 217 chance that your child will ever need a stem cell transplant with cord blood (or bone marrow). This is particularly true if the child doesn’t have a family history of diseases such as leukemia, lymphoma, or sickle cell anemia. Although the American Academy of Pediatrics (AAP) states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does choose to bank cord blood, the AAP recommends public cord blood banking (instead of private) to cut down on expenditures.
For transplants, the primary advantage of cord blood stem cells over stem cells from adults is that they cause much less graft versus host disease (GvHD).  In order to safely transplant adult stem cells, the patient and donor must match over at least 10 of 12 tissue types called Human Leukocyte Antigens (HLA), or 83% HLA match.  By comparison, medical outcomes are just as good with cord blood that has a 4 out of 6 or 67% HLA match.
The information on this site is not intended or implied to be a substitute for professional medical advice, diagnosis or treatment. All content, including text, graphics, images, and information, contained on or available through this website is for general information purposes only. The purpose of this is to help with education and create better conversations between patients and their healthcare providers.
To most people, the issue comes down to money.  If you had unlimited money, you would spend a few thousand to even miniscually increase the chance of your child enjoying good health. However, since you probably don’t have unlimited money, you will have to decide how to best spend and save for your children’s future. If you invested the Viacord fee of $1550 plus $150 for the courier at your child’s birth in the stock market, you would have $12,210 by the time he turned 21. That would certainly help pay for college or even his medical insurance after he graduated from college. The odds are that your child will need a college education more than an autologous bone marrow transplant. So if you have to choose between one or the other, make the right choice by saving the money for his future.
When parents donate cord blood to a public bank, they are supporting patients around the world who are searching for an unrelated Allogeneic donor. When parents save cord blood in a family bank, they are reserving the options that the baby can use its own stem cells for an Autologous treatment, or an immediate relative (sibling or parents) can use the stem cells for an Allogeneic treatment.
Meredith Women’s Network | Parents.com is part of the Parents Network. © Copyright 2017 Meredith Corporation. All Rights Reserved Privacy Policy – Your California Rights Data Policy Terms of Service EU Data Subject Requests AdChoices
Nagatoshi Y, Kawano Y, Okamura J. Comparison of the outcomes of allogeneic bone marrow transplantation from partially mismatched related donors, matched sibling donors, and matched unrelated donors in Japanese pediatric patients: a single center result. Pediatr Transplant.2004;8 :260– 266
4. Parkinson’s disease. Stem cells may also help those who suffer from Parkinson’s, a neurodegenerative disorder that can cause tremors, stiffness, and other movement and speech problems. Studies show that embryonic stem cells can give rise to the dopamine-making neurons that Parkinson’s patients lack. When transplanted into rodents with a Parkinson’s-like disorder, those replacement brain cells improved the animals’ motor function.
6. Lou Gehrig’s disease. There’s hope that stem cells could help those with Lou Gehrig’s disease, also known as amyotrophic lateral sclerosis, or ALS. The crippling disease comes with a grim prognosis: Many die within three to five years of diagnosis, as their bodies progressively damage muscle-controlling motor neurons in the brain and spinal cord. Scientists are exploring ways to coax stem cells into becoming motor neurons that could be transplanted into ALS patients, restoring their ability to move.
Just like other blood donations, there is no cost to the donor of cord blood. If you do not choose to store your baby’s blood, please consider donating it. Your donation could make a difference in someone else’s life.
A cord blood industry report by Parent’s Guide to Cord Blood Foundation found that, among developed nations, cord blood banking cost is only 2% of the annual income of those households likely to bank.
9. Sickle cell anemia. Stem cell researchers are exploring ways to correct numerous blood disorders, including sickle cell anemia. Mice have been cured of the sometimes-deadly condition after receiving transfusions of stem cells made from their own skin cells.
A few years ago, cord blood was simply discarded as medical waste after a birth.  However, in the past few years, doctors have recognized that the stem cells have unique qualities which can be used in the treatment of certain cancers.  The most common medical use is for transplantation in many situations where bone marrow is considered.  In the future, it is possible that scientists will discover more diseases that can be cured with cord blood.
Cord blood donation should be discouraged when cord blood stored in a bank is to be directed for later personal or family use, because most conditions that might be helped by cord blood stem cells already exist in the infant’s cord blood (ie, premalignant changes in stem cells). Physicians should be aware of the unsubstantiated claims of private cord blood banks made to future parents that promise to insure infants or family members against serious illnesses in the future by use of the stem cells contained in cord blood. Although not standard of care, directed cord blood banking should be encouraged when there is knowledge of a full sibling in the family with a medical condition (malignant or genetic) that could potentially benefit from cord blood transplantation.

Leave a Reply

Your email address will not be published. Required fields are marked *