cord blood benefits | how many babies need cord blood

Depending on the predetermined period of storage, the initial fee can range from $900 to $2100. Annual storage fees after the initial storage fee are approximately $100. It is common for storage facilities to offer prepaid plans at a discount and payment plans to help make the initial storage a more attractive option for you and your family.
Currently, cord blood stem cells have been approved by the FDA in the treatment nearly 80 diseases. In addition to these approved regenerative therapies, there are close to 350 clinical trials underway investigating the use of umbilical cord blood and umbilical cord tissue for stem cell transplantation, and this number promises to steadily increase. Cord blood stem cells are approved for numerous types of malignancies, anemias, inherited metabolic disorders and deficiencies of the immune system. The majority of cord blood transplants to date have been performed in patients younger than 18 years; however, advancements in regenerative medicine show promise for all ages. See all the diseases currently being treated.
5. Alzheimer’s disease. Likewise, embryonic stem cells may come in handy against Alzheimer’s disease, a progressive and deadly disorder that degrades and kills brain cells, leading to memory loss, cognitive decline, and behavioral problems. Stem cells may give rise to new treatments or even, some say, a cure; other experts have expressed skepticism.
Tracey Dones of Hicksville, N.Y., paid to bank her son Anthony’s cord blood. But four months after he was born, Anthony was diagnosed with osteopetrosis, a rare disease that causes the body to produce excess bone, leads to blindness, and can be fatal if left untreated.
Regulatory agencies (eg, FDA, Federal Trade Commission, and state equivalents of these federal agencies) are encouraged to have an active role in providing oversight of the cord blood program. All cord blood–banking programs should comply with FACT or equivalent accreditation standards.
The blood within your newborn baby’s umbilical cord contains young stem cells that can renew themselves and become specialized. These cord blood stem cells have been proven in treatment to help children replace damaged blood cells with healthy ones and strengthen their immune systems. Cord blood banking is the process of collecting and storing these stem cells for potential medical use.
Because there are no scientific data at the present time to support autologous cord blood banking and given the difficulty of making an accurate estimate of the need for autologous transplantation and the ready availability of allogeneic transplantation, private storage of cord blood as “biological insurance” should be discouraged. Cord blood banks should comply with national accreditation standards developed by the Foundation for the Accreditation of Cellular Therapy (FACT), the US Food and Drug Administration (FDA), the Federal Trade Commission, and similar state agencies. At a minimum, physicians involved in procurement of cord blood should be aware of cord blood collection, processing, and storage procedures as shown in Table 2.
Families should seriously pursue public banking, donation for research, or private banking instead of discarding their baby’s umbilical cord blood. We aim to be nonpartisan in our dissemination of information, but we believe that discarding your baby’s cord blood is a waste of a once-in-a-lifetime valuable resource.
For families that choose to bank cord blood, the American Academy of Pediatrics (AAP) recommends public cord blood banking. Estimates vary, but the chances of a child having a stem cell transplant, with either bone marrow or cord blood, are 1 in 217 over a lifetime. Although the AAP states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does decide on cord blood banking, the AAP recommends public cord blood banking (instead of private) to cut down on costs. If you donate cord blood and your child eventually needs it, you can get it back as long as it hasn’t been discarded or used.
Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A. Mesenchymal Stem Cells in Regenerative Medicine: Opportunities and Challenges for Articular Cartilage and Intervertebral Disc Tissue Engineering. J Cell Physiol. 2010; 222(1):23-32.
Kasamon YL, Jones RJ, Piantadosi S, et al. High-dose therapy and blood or marrow transplantation for non-Hodgkin lymphoma with central nervous system involvement. Biol Blood Marrow Transplant.2005;11 :93– 100
Cord blood has been used for 20 years to treat more than 80 serious diseases.34 Successful treatments have paved the way for further research and today, FDA-regulated clinical trials are exploring the use of a child’s own stem cells for conditions that currently have no cure.
ViaCord collaborates with leading research and medical centers across the country to help advance medical treatments using cord blood, discover treatments using cord tissue, and connect families to relevant clinical trials.
Stem cells in the umbilical cord blood were first discovered in 1978. The stem cells found in cord blood give rise to all the other blood cells and are the foundation of our bodies’ immune system. More recently, scientists discovered a rich supply of a different type of stem cell in the cord tissue. These stem cells give rise to the tissues that comprise our nervous system, sensory organs, circulatory tissues, skin, bone, cartilage and more.
Most stored cord blood is discarded. At public cord blood banks, a unit of stored cord blood has a greater chance of being used to help a sick child or used toward stem cell research. Private cord blood banks, on the other hand, eventually throw away blood that a family no longer wants to store or use.
Barker JN, Davies SM, DeFor T, Ramsay NK, Weisdorf DJ, Wagner JE. Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis. Blood.2001;97 :2957– 2961
Cade Hildreth is the Founder of BioInformant.com, the world’s largest publisher of stem cell industry news. Cade is a media expert on stem cells, recently interviewed by the Wall Street Journal, Los Angeles Business Journal, Xconomy, and Vogue Magazine. 
Marketing materials by Viacord and Cord Blood Registry, the two largest companies, do not mention that cord blood stem cells cannot be used by the child for genetic diseases, although the fine print does state that cord blood may not be effective for all of the listed conditions.
‡ Payment Plan Disclosures for in-house CBR 6-Month Plan (interest free) – No credit check required. The 6-month plan requires a $10/month administrative fee. The plans may be prepaid in full at any time.
In a number of genetic, hematologic, immunologic, metabolic, and oncologic disorders, reconstitution of bone marrow (transplantation) can be a potentially life-saving procedure.1–16 Allogeneic (related or unrelated) or autologous (self) bone marrow or peripheral blood stem cells are the usual sources of hematopoietic progenitor cells to achieve this goal. If autologous stem cells are not available or cannot be used, the best option for successful reconstitution therapy is to secure stem cells from an HLA-matched sibling.1,3,11 Close matching confers a higher probability of successful engraftment and minimizes the risk of potentially fatal graft-versus-host disease. Unfortunately, there is only a 25% chance for identifying a full HLA match in a sibling donor.17,18
The potential powers of these cells have researchers excited. But what that scientific hope means for expectant parents facing decisions about cord blood banking is far from clear. For all of the promise, there are lots of reasons why umbilical cord cells may turn out to be less useful than thought. Read my next post for more about these potential drawbacks.
Korthof ET, Snijder PP, de Graaff AA, et al. Allogeneic bone marrow transplantation for juvenile myelomonocytic leukemia: a single center experience of 23 patients. Bone Marrow Transplant.2005;35 :455– 461
Many private banking proponents think that by storing your baby’s cord blood stem cells, you are positioning your family with a form of biological insurance in the event that your child or a close family member has a treatable disease.
Right after the cord is clamped and cut, your medical practitioner uses a needle and gets it inserted into the umbilical vein of the cord. Only that part is cut which is still attached to the placenta. High quality and proper needles are used and they do not go anywhere near your baby.
Public cord blood companies are mostly nonprofit companies that are traded publicly, and doctors can utilize matching cord blood in these banks for treating their patients, even if the blood is not their own.
6. Lou Gehrig’s disease. There’s hope that stem cells could help those with Lou Gehrig’s disease, also known as amyotrophic lateral sclerosis, or ALS. The crippling disease comes with a grim prognosis: Many die within three to five years of diagnosis, as their bodies progressively damage muscle-controlling motor neurons in the brain and spinal cord. Scientists are exploring ways to coax stem cells into becoming motor neurons that could be transplanted into ALS patients, restoring their ability to move.
All cord blood banks in the US are required to register with Food and Drug Administration. To ensure safety, cord blood banks must comply with FDA regulations, including current good tissue practice regulations, donor screening and testing for infectious diseases, including HIV I & II (the virus that causes AIDS), Hepatitis B & C, which can cause liver disease, Cytomegalovirus (CMV) a virus that can lead to pneumonia, Human T-cell Lymphotropic Virus (HTLV) 1 & 2, which can suppress the immune system, West Nile Virus, Zika Virus, Treponema pallidum (the bacterium that can cause syphilis) and Variant Creutzfeldt-Jakob Disease (vCJD), a rare virus that can cause brain disease. Since 2011, the FDA has required public cord blood banks to obtain a license under a Biologics License Application.
*Fee schedule subject to change without notice. If a client has received a kit and discontinues services prior to collection, there is no cancelation fee if the kit is returned unused within two weeks from cancelation notice; otherwise, a $150 kit replacement fee will be assessed. †Additional courier service fee applies for Alaska, Hawai’i and Puerto Rico. ††Applies to one-year plan and promotional plan only. After the first year, an annual storage fee will apply. Cryo-Cell guarantees to match any written offer for product determined to be similar at Cryo-Cell’s sole discretion. ** Promotional Plan cannot be combined with any other promotional offers, coupons or financing.
Learning about cord blood banking shouldn’t have to be confusing – or boring. Watch one of our stem cell experts who also happens to be a former RN and Labor & Delivery nurse, talk cord blood banking 101. She answers the questions every parent has about banking cord blood and ViaCord.
24/7 opperation of services, including holidays, is a must.  As we all know, giving birth can happen at any time of day, which is why core blood banks should be at the ready for whenever your little one make his or her grand debut. Select a cord blood bank that utilizes industry approved standards for shipping. Temperature fluctuations speeds up cell death which affects the number of viable cells that reaches the laboratory for storage. Cord blood banks which use commercial shipping services, such as FedEx, use heavily insulated boxes to protect specimens. While others use medical couriers who specialize in delivering medical specimens, for added protection of your cord blood or tissue specimens.
Umbilical cord blood stem cells are different from other kinds of cells in a couple of different ways. The first is that umbilical cord blood stem cells are unspecialized cells, which have the ability to renew themselves by cell division, even after significant time has elapsed since they were frozen. The second reason is that in certain situations, and under exacting conditions, the umbilical cord stem cells can become tissue- or organ-specific cells, allowing regeneration of those tissues.
2. Diabetes. For the many Americans with type 1 diabetes, whose insulin-making pancreatic cells have been killed off by their immune system, stem cells may be the answer. Last year, scientists reported that they had coaxed human embryonic stem cells into becoming insulin-producing, blood sugar-regulating cells in diabetic mice. The aim: to someday do the same for people.
Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med.1989;321 :1174– 1178
The use of cord blood is determined by the treating physician and is influenced by many factors, including the patient’s medical condition, the characteristics of the sample, and whether the cord blood should come from the patient or an appropriately matched donor. Cord blood has established uses in transplant medicine; however, its use in regenerative medicine is still being researched. There is no guarantee that treatments being studied in the laboratory, clinical trials, or other experimental treatments will be available in the future.
Stay up on the latest stem cell developments with our stem cell news blog. Read about the newest trials that are underway, how current trials are faring and new ways that cord blood and tissue stem cells are being used in regenerative therapies. For doctors and researches, the Stem Cell Insider provides a more detailed look at the latest stem cell news and showcases the latest advancements in our products to help ensure stem cells preserved with us are viable and pure.
Private (commercial) cord banks will store the donated blood for use by the donor and family members only. They can be expensive. These banks charge a fee for processing and an annual fee for storage.
Shai was a feisty little girl whose mother used her scientific background to search for the best approach to cure her cancer. Shai narrowly escaped death many times, including a recovery that even her doctors considered a miracle, yet she died at dawn on the day that she would have begun kindergarten. Her mother went on to found this website and charity in her memory. Read more…
One of the key things you’ll want the cord blood bank’s representative to explain to you is how the cord blood bank collects and stores cord blood. Collection and storage methods may differ across cord blood banking companies, and you’ll want to be sure that the cord blood bank complies with all federal standards.2
Cord blood banking means preserving the newborn stem cells found in the blood of the umbilical cord and the placenta. After a baby is born, and even after delayed cord clamping, there is blood remaining in the umbilical cord and placenta that holds valuable newborn stem cells. Parents have a choice between donating cord blood to a public bank for free, or paying to store it for their family in a private bank. Cord blood banking includes the whole process from collection through storage of newborn stem cells for future medical purposes.
In 1988, a 5-year-old named Matthew with a rare type of anemia received umbilical cord blood cells from his newborn sister, who didn’t have the disease. That transfer, called an umbilical cord blood transplant, worked, and the boy was soon free of the disease.
Lifebank USA is another private bank, located in Cedar Knolls, New Jersey, that’s accredited by the AABB. What sets this bank apart from the others: it’s one of the few banks that store umbilical cord blood and placenta blood (this is done for free). Stem cells from placenta tissue can turn into skeletal tissue types such as bone, cartilage, fat tissue, and connective tissue, whereas cells from cord blood turn into different types of blood cells.





The information on this site is not intended or implied to be a substitute for professional medical advice, diagnosis or treatment. All content, including text, graphics, images, and information, contained on or available through this website is for general information purposes only. The purpose of this is to help with education and create better conversations between patients and their healthcare providers.
Let’s look back at the expectant couple in my childbirth class who asked about banking their infant’s umbilical cord blood. They should not base their decision to bank the umbilical cord blood on the type of anticoagulant used to preserve the sample; likewise, they should not obtain all of their information on cord blood banking from the private cord blood bank, whose major agenda is to gain another client. Instead, they must be encouraged to research various resources for reliable information (see Table 4). If they have evidence that stem cells are used currently to treat a specific disease process that is affecting a family member, and is not simply a proposed idea, then it might be in their best interest to privately bank the umbilical cord blood. However, they should be aware that simply banking the cord blood does not ensure a cure, and they would most likely be banking the blood not for the current baby, but for some other family member. They must also be aware of the cost involved in the banking process. Finally, if they do not have a relative with a disease process treated with stem cells or there is no evidence that stem cells are used to treat the diseases that are known to be in their family, then they should consider public banking of the umbilical cord blood (if they have access to a public cord blood bank).
Now when you know what is cord blood, you might be wondering how it is collected. Well, cord blood is collected right after the birth of your little one. The procedure is completely painless and free from risks as well. The procedure is so quick, hassle-free and painless that neither a newborn nor a new mother realizes the entire procedure has taken place. Following is a list of steps depicting how the procedure is actually convened. Read on, to grasp a better insight on cord blood banking and its proceedings.
In the past years, there have been dramatic medical advances in the arena of stem cell research, and more discoveries are announced practically every month. Many doctors and researchers see great potential in the use of stem cells to reverse or cure many severe, life-threatening diseases. With these facts in mind, many parents are choosing to preserve the stems cells found in umbilical cord blood after birth. There are no health risks in doing so. The primary risk is that the $100 yearly fee for storage will be wasted in the event that the stem cells are never needed.
Basing your decision solely on the price of service may actually cost you in the long run. This is why we look at the quality of cord blood services provided and the costs of maintaining state of the art facilities.
AlphaCord has a 100% success rate of viable specimens upon thaw. It has been in business for over a decade and is FDA-approved. The company aims to provide a low-cost means of collecting and processing cord blood for customers.
Childbirth educators may be one of the first resources that an expectant family turns to in order to gain more knowledge to make an informed decision about collecting umbilical cord blood in the birthing process. Therefore, the childbirth educator should be well versed on the topic, so that as questions from class participants arise, the multiple facets of umbilical cord blood banking can be explored.

Leave a Reply

Your email address will not be published. Required fields are marked *