cord blood donation kit | who owns viacord cord blood

Initially, cord blood stem cell transplantation using allogeneic umbilical cord blood was performed in relatively small children, because the cell dose per weight of recipient was shown to be important.19,20 However, older children, adolescents, and adults have benefited from unrelated allogeneic umbilical cord blood transplantation.34,55–61 Because of the relationship between cell dose per recipient weight and transplant outcome, the number of cord blood cells needed for marrow reconstitution in older children or young adults is much larger than that needed when cord blood is used for transplantation in small children. Cord blood transplants using multiple cryopreserved units from separate donors have been performed successfully in adults, and the approach is currently under investigation as a strategy to increase the dose of cells for transplantation in a single recipient.62 Cord blood is collected in observance of good obstetric and pediatric practice.45
An accredited lab. In the United States, the FDA requires all public banks to have a Biologics License Application, but not private banks, though they are registered and inspected. Both public and private banks should have extra accreditation, which means banks are evaluated for the quality and accuracy of work. The two companies that handle accreditation are the American Association of Blood Banks (AABB) and the Foundation for the Accreditation of Cellular Therapy (FACT). Look for a bank with its own lab (some banks use labs at other banks), which means more regular quality control and testing standards.
Private (commercial) cord banks will store the donated blood for use by the donor and family members only. They can be expensive. These banks charge a fee for processing and an annual fee for storage.
Cord Blood Registry® (CBR®) is the world’s largest newborn stem cell company. Founded in 1992, CBR is entrusted by parents with storing samples from more than 600,000 children. CBR is dedicated to advancing the clinical application of cord blood and cord tissue stem cells by partnering with institutions to establish FDA-regulated clinical trials for conditions that have no cure today.
Family Cord, located in Los Angeles, has a high-quality lab, a top rating from the Better Business Bureau, and accreditation from AABB; it’s also been in business since 1997. Family Cord is one of the few banks that will also cover the cost of cord blood banking for the first year (there’s an annual fee after the first year) in cases where a baby has a sick sibling or another family member who could benefit from the cord blood.
These are diagnoses for which stem cell treatments are being studied either in the laboratory with cell cultures or in animals that mimic the human disease. The experimental therapies are not yet in human clinical trials. In experimental research, it is often not clear whether an eventual therapy, if developed, would be Autologous or Allogeneic.
M.A.Z.E. Cord Blood Laboratories is an FDA-approved and regulated storage facility that partners with Community Blood Services for processing. The company has processed over 30,000 units of cord blood since opening in 1997.





After harvesting, the umbilical cord blood is taken to a cord blood bank where it will be tested to make sure that it is clear of disease and other contaminants. Before being frozen, a cryopreservant is added to the cord blood so that the stem cells are able to be frozen without damaging them, after which they are stored in a liquid nitrogen Cord Blood storage tank at –196 Celsius.
Cord blood specimens for non-clinical scientific research studies are also available through the Cord Blood Transplantation (COBLT) Study, funded by the National Heart Lung and Blood Institute (NHLBI)
Families that are predisposed to certain diseases, that are ethnically mixed, that are adopting a newborn child, or that have a family member who may need a stem cell transplant should take special care to understand the value the cells may provide and their storage options.
Properly preserved cord blood is long-lasting. Cord blood is stored in a nitrogen freezer (the same technology used to freeze donated sperm), so it can last for a long time. “The scientist who first developed cord blood preservation methods in 1990 has confirmed that some of the first specimens he stored 23 plus years ago are just as potent as fresh cord blood,” says Mary Halet, Director, Central Region at Be The Match, which is operated by the National Bone Marrow Foundation.
This web page was researched by Frances Verter, PhD, Alexey Bersenev, MD PhD, and Pedro Silva Couto, MSc ©2016-2018. Sources of information about established therapies were publications in the medical literature found via PubMed and Google Scholar. Sources of clinical trials were searches of ClinicalTrials.gov, Chinese Clinical Trial Registry (ChiCTR), Japan University hospital Medical Information Network Clinical Trial Registry (UMIN-CTR), Japan Medical Association Clinical Trial Registry (JMA-CTR), Clinical Research Information Service from South Korea (CRiS), EU Clinical Trials Register (EudraCT), World Health Organization International Clinical Trials Registry Platform (ICTRP), Netherlands Trial Register (NTR), Australian New Zealand Clinical Trial Registry (ANZCTR), Clinical Trials Registry-India (CTRI), German Clinical Trials Register (DRKS), and Iranian Registry of Clinical Trials (IRCT).
1. As today’s children grow up and some of them develop cancer as adults, autologous (self) cord blood transplants will become more commonly used. Pediatric cancers and adult cancers are completely different diseases at the cellular level (to learn more about cancer visit the website of the National Cancer Institute). While pediatric cancer patients rarely receive autologous transplants, among adult cancer patients the autologous transplants are more common than transplants from donors.
Cord blood has been shown to contain pluripotent stem cells that have the potential to differentiate into nonhematopoietic tissue, such as cardiac, neurologic, pancreatic, and skin tissue, in vitro.53,54 Extensive laboratory research is taking place to explore the potential therapeutic benefit of cord blood under these circumstances. The results of this research will be necessary to formulate future recommendations regarding autologous cord blood banking.
A courier collection service. Private banks have a person pick up your donated cord blood, which helps ensure that it arrives at your chosen bank quickly and doesn’t get lost along the way, and that the temperature will remain consistent enough to be accepted at the lab. (Public banks usually send an insulated kit for you to preserve and mail the cord blood.)
Therapies with cord blood have gotten more successful. “The outcomes of cord blood transplants have improved over the past 10 years because researchers and clinicians have learned more about dosing cord blood, picking better matches, and giving the patient better supportive care as they go through the transplant,” says Joanne Kurtzberg, M.D., director of the pediatric bone marrow and stem cell transplant program at Duke University.
Accurate information about the potential benefits and limitations of allogeneic and autologous cord blood banking and transplantation should be provided. Parents should be informed that autologous cord blood would not be used as a stem cell source if the donor developed leukemia later in life. Parents should recognize that there are no scientific data to support the claim that autologous cord blood is a tissue source proven to be of value for regenerative medical purposes. The current standard uses of cord blood transplantation are listed in Table 1.
The “cell recovery rate” is often used to compare processing methods. Expressed as a percentage, the cell recovery rate tells you how many cells are retrieved from the original cord blood collection, once plasma has been removed and red blood cells have been reduced or removed. It is expected that some cells will be lost during processing, and most processing methods have published cell recovery rates between 80%—99%
ViaCord collaborates with leading research and medical centers across the country to help advance medical treatments using cord blood, discover treatments using cord tissue, and connect families to relevant clinical trials.
Currently, cord blood stem cells have been approved by the FDA in the treatment nearly 80 diseases. In addition to these approved regenerative therapies, there are close to 350 clinical trials underway investigating the use of umbilical cord blood and umbilical cord tissue for stem cell transplantation, and this number promises to steadily increase. Cord blood stem cells are approved for numerous types of malignancies, anemias, inherited metabolic disorders and deficiencies of the immune system. The majority of cord blood transplants to date have been performed in patients younger than 18 years; however, advancements in regenerative medicine show promise for all ages. See all the diseases currently being treated.
Laughlin MJ, Rizzieri DA, Smith CA, et al. Hematologic engraftment and reconstitution of immune function post unrelated placental cord blood transplant in an adult with acute lymphocytic leukemia. Leuk Res.1998;22 :215– 219
Anak S, Saribeyoglu ET, Bilgen H, et al. Allogeneic versus autologous versus peripheral stem cell transplantation in CR1 pediatric AML patients: a single center experience. Pediatr Blood Cancer.2005;44 :654– 659
There are around 20 companies in the United States offering public cord blood banking and 34 companies offering private (or family) cord blood banking. Public cord blood banking is completely free (collecting, testing, processing, and storing), but private cord blood banking costs between $1,400 and $2,300 for collecting, testing, and registering, plus between $95 and $125 per year for storing. Both public and private cord blood banks require moms to be tested for various infections (like hepatitis and HIV).
Part of the reason for the dominance of these three companies in terms of the total number of units stored is that they are three of the oldest cord blood banks within the U.S., founded in 1992, 1993, and 1989, respectively. All three of these cord blood banks also support cord blood research and clinical trials.
In recent years, umbilical cord blood, which contains a rich source of hematopoietic stem and progenitor cells, has been used successfully as an alternative allogeneic donor source to treat a variety of pediatric genetic, hematologic, immunologic, and oncologic disorders. Because there is diminished risk of graft-versus-host disease after transplantation of cord stem cells using matched related donors, the use of less-than-completely matched HLA cord blood stem cells may incur less risk of graft-versus-host disease than mismatched cells from either a related or unrelated “walking” donor, although this remains to be proven. Gene-therapy research involving modification of autologous cord blood stem cells for the treatment of childhood genetic disorders, although experimental at the present time, may prove to be of value. These scientific advances have resulted in the establishment of not-for-profit and for-profit cord blood–banking programs for allogeneic and autologous cord blood transplantation. Many issues confront institutions that wish to establish or participate in such programs. Parents often seek information from their physicians about this new biotechnology option. This document is intended to provide information to guide physicians in responding to parents’ questions about cord blood donation and banking and the types and quality of cord blood banks. Provided also are recommendations about appropriate ethical and operational standards, including informed consent policies, financial disclosures, and conflict-of-interest policies for physicians, institutions, and organizations that operate or have a relationship with cord blood–banking programs.
Prior to transplanting any type of tissue, a “matching” process must occur to increase the success of the transplant and decrease the likelihood that the transplant will be rejected. The rejection of a transplanted tissue is called “graft versus host disease.” The matching process dates back to the late 1950s when the human leukocyte antigens were discovered. There are two classes of human leukocyte antigens. The first class is located on the surface of almost all of the cells with a nucleus within the body of the cell. The second class of human leukocyte antigens is located on the surface of immune cells. Each of the two classes of antigens has three subgroups, creating six antigens for which matching can occur. Thus, a “6 of 6” matching of the antigens represents a “perfect” match. Beyond the matching process, other factors contribute to the success or failure of a stem cell transplant. These factors include, but are not limited to, the age of both the donor and the patient, the type of disease being treated, and the number of stem cells being transplanted (Moise, 2005).
It’s hard to ignore the ads for cord blood banks, offering a lifetime of protection for your children. If you’re an expectant mom, there’s information coming at you constantly from your doctor’s office, magazines, online, and perhaps even your yoga class.
Ozkaynak MF, Sandoval C, Levendoglu-Tugal O, Jayabose S. A pilot trial of tandem autologous peripheral blood progenitor cell transplantation following high-dose thiotepa and carboplatin in children with poor-risk central nervous system tumors. Pediatr Hematol Oncol.2004;21 :635– 645
It’s incredible how much little we know about the science when it comes down to the almost everything. A group of very open-minded scientists studying and understanding the spiritual laws and the laws of the universe. learned through various experiments how to capture the essence of the sun into the high-quality organic oil.
Both public and family cord blood banks must register with the US Food and Drug Administration (FDA), and since Oct. 2011 public banks also need to apply for an FDA license. All cord blood banks are required by federal law to test the blood of the mother for infectious diseases. At public banks the screening is usually more extensive, similar to the tests performed when you donate blood. The typical expense to a public bank is $150 per unit.
“This is a medical service that has to be done when your baby’s cells arrive and you certainly want them to be handled by good equipment and good technicians,” says Frances Verter, Ph.D., founder and director of Parent’s Guide to Cord Blood Foundation, a nonprofit dedicated to educating parents about cord blood donation and cord blood therapists. “It’s just not going to be cheap.” Although the American Academy of Pediatrics (AAP) states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does choose to bank cord blood, the AAP recommends public cord blood banking (instead of private) to reduce costs.
Compare costs and services for saving umbilical cord blood, cord tissue, and placenta tissue stem cells. Americord’s® highest quality cord blood banking, friendly customer service, and affordable pricing have made us a leader in the industry.
The next step at either a public or family bank is to process the cord blood to separate the blood component holding stem cells. The final product has a volume of 25 milliliters and includes a cryoprotectant which prevents the cells from bursting when frozen. Typical cost, $250 to $300 per unit.
If the doubts of the AAP, weren’t enough to turn you off cord banking, the cost is enormous.  At Viacord, (see ad on left) the price begins at $1550 at birth, plus $150 for a courier to deliver the blood, plus $95 dollars for storage a year.  At these prices, that will cost you $2840 by the time your baby is 21.  
Stay up on the latest stem cell developments with our stem cell news blog. Read about the newest trials that are underway, how current trials are faring and new ways that cord blood and tissue stem cells are being used in regenerative therapies. For doctors and researches, the Stem Cell Insider provides a more detailed look at the latest stem cell news and showcases the latest advancements in our products to help ensure stem cells preserved with us are viable and pure.
There are no health risks related to cord blood collection. Cord blood is retrieved from the umbilical cord after it has been cut, thus preventing any pain, discomfort, or harm. This process is completely safe.
Umbilical cord blood stem cells are different from embryonic stem cells. Umbilical cord blood stem cells are collected by your ob-gyn or a nurse from the umbilical cord after you give birth (but before your placenta is delivered). Embryonic stem cells are collected when a human embryo is destroyed.
Cord blood banking means preserving the newborn stem cells found in the blood of the umbilical cord and the placenta. After a baby is born, and even after delayed cord clamping, there is blood remaining in the umbilical cord and placenta that holds valuable newborn stem cells. Parents have a choice between donating cord blood to a public bank for free, or paying to store it for their family in a private bank. Cord blood banking includes the whole process from collection through storage of newborn stem cells for future medical purposes.
3. Heart disease. It’s the leading cause of death in the United States, and stem cells may provide some relief. Research is underway to see if injecting the cells into the heart could help regenerate heart muscle damaged by, for example, a heart attack. Again, researchers have reported success in rodents.
Since 1988, cord blood transplants have been used to treat over 80 diseases in hospitals around the world. Inherited blood disorders such as sickle cell disease and thalassemia can be cured by cord blood transplant. Over the past decade, clinical trials have been developing cord blood therapies for conditions that affect brain development in early childhood, such as cerebral palsy and autism.
Depending on the predetermined period of storage, the initial fee can range from $900 to $2100. Annual storage fees after the initial storage fee are approximately $100. It is common for storage facilities to offer prepaid plans at a discount and payment plans to help make the initial storage a more attractive option for you and your family.
New England Cord Blood Bank was founded in 1971 and is one of the pioneers in processing and cryopreservation of human cells and tissue. The company is continuing to expand its research and development center.
8. Arthritis. Also called degenerative joint disease, osteoarthritis—the most common form of arthritis—results when protective cartilage in joints wastes away. Once it’s gone, it’s gone for good. Stem cells could change that. Scientists are examining how best to use them to rebuild lost cartilage and repair shot joints.
Cord blood is the blood that remains in the umbilical cord and placenta following birth. This blood is usually discarded. However, cord blood banking utilizes facilities to store and preserve a baby’s cord blood. If you are considering storing your baby’s cord blood, make sure to use a cord blood bank accredited by the American Association of Blood Banks (AABB), like Viacord.
Cord tissue is rich in another type of stem cell. Although there are no current uses, researchers are excited about the benefits cord tissue stem cells may offer in potential future users, such as regenerative medicine. By storing both, you’ll have potential access to more possibilities
CBR’s lab stores over 700,000 cord blood and cord tissue stem cell units. As a result of our size, we are able to continuously invest in clinical trials, product innovation, and our lab and storage facility. We own our state-of-the-art facility. And, we continually invest in quality and security. This means our families will always have access to their stem cells.
The materials and information included in this electronic newsletter (Newsletter), including advertisements, are provided as a service to you and do not reflect endorsement by the Parent’s Guide to Cord Blood Foundation (the “Foundation”). The Foundation is not responsible for the accuracy and completeness of information provided by guest authors, outside sources, or on websites linked to the Newsletter. The Foundation reserves the right at any time to remove materials and information from the Newsletter without communication with the author or organization. Access to and use of all Newsletter information is at the user’s own risk. The Foundation is not liable for any damages of any kind, nature or description (whether direct, consequential or punitive) arising out of or relating to information referenced in the Newsletter, or related in any way to the user’s access to the Newsletter. The Foundation’s Terms of Use is expressly incorporated herein. Questions can be directed to info@parentsguidecordblood.org.
These are diseases for which transplants of blood-forming stem cells (Hematopoietic Stem Cell Transplants, HSCT) are a standard treatment. For some diseases they are the only therapy, and in other diseases they are only employed when front-line therapies have failed or the disease is very aggressive. The lists below include ALL therapies that use blood-forming stem cells, without distinction as to whether the stem cells were extracted from bone marrow, peripheral blood, or cord blood.
There are many “what if” situations that we all consider in our life. One of the most serious is “What if a child or other family member was to become seriously ill?” Cord Blood Banking clinics have been growing exponentially in response to this common fear. But should you ever find yourself in this dilemma, what are the pros and cons of using cord blood cells versus other stem cell-related treatments? This article will take a comparative look at some of the key benefits and difficulties as well as the financial costs of cord blood banking.
§ CBR Systems, Inc.’s activities for New York State residents are limited to collection of umbilical cord tissue and long-term storage of umbilical cord-derived stem cells. CBR Systems, Inc.’s possession of a New York State license for such collection and long-term storage does not indicate approval or endorsement of possible future uses or future suitability of these cells.
StemCyte™ has extensive experience providing cord blood units for transplants in children and adults with life-threatening diseases. Other private cord blood banks may have provided family-related cord blood for transplants, but only StemCyte™’s cord blood units have been used to 2000 plus transplants to date.

Leave a Reply

Your email address will not be published. Required fields are marked *