cord blood donation kit | who owns viacord cord blood

We chose the site of our lab for one reason in particular: safety. As one of the safest cities in the US, Tucson ensures our families’ samples will be protected from natural disaster. Natural disasters, such as hurricanes, tornadoes, and earthquakes, could interrupt consistent long-term storage of stem cells.
Medical shipping: Some cord blood companies use medical shipping companies to deliver cord blood; these companies guarantee that cord blood is kept a certain temperature and delivered to the facility by a certain time, typically within 24 hours of collection.
A number of private for-profit companies have been established that encourage parents to bank their children’s cord blood for their own autologous use or for directed donor allogeneic use for a family member should the need arise. Parents have been encouraged to bank their infants’ cord blood as a form of “biological insurance.” Physicians, employees, and/or consultants of such companies may have potential conflicts of interest in recruiting patients because of their own financial gain. Annual disclosure of the financial interest and potential conflicts of interest must be made to institutional review boards that are charged with the responsibility of mitigation of these disclosures and risks. Families may be vulnerable to the emotional effects of marketing for cord blood banking at the time of birth of a child and may look to their physicians for advice. No accurate estimates exist of the likelihood of children to need their own stored cord blood stem cells in the future. The range of available estimates is from 1 in 1000 to more than 1 in 200000.51 The potential for children needing their own cord blood stem cells for future autologous use is controversial presently.51 There also is no evidence of the safety or effectiveness of autologous cord blood stem cell transplantation for the treatment of malignant neoplasms.51 Indeed, there is evidence demonstrating the presence of DNA mutations in cord blood obtained from children who subsequently develop leukemia.52 Thus, an autologous cord blood transplantation might even be contraindicated in the treatment of a child who develops leukemia.
Some researchers suspect that umbilical cord blood contains other cells that may have therapeutic effects beyond the blood. Specialized immune cells may be able to tweak brain function, for instance. Trials around the world are studying umbilical cord blood’s capabilities in a wide range of diseases (see Table 2 here): Cerebral palsy, autism, diabetes and lupus are currently under investigation. The cells are even being tested for an ameliorating role in Alzheimer’s disease and other neurodegenerative conditions.
Tracey Dones of Hicksville, N.Y., paid to bank her son Anthony’s cord blood. But four months after he was born, Anthony was diagnosed with osteopetrosis, a rare disease that causes the body to produce excess bone, leads to blindness, and can be fatal if left untreated.
* Disclaimer: Banking cord blood does not guarantee that treatment will work and only a doctor can determine when it can be used. Cord tissue stem cells are not approved for use in treatment, but research is ongoing. 
To save money, public banks will not even process a cord blood donation unless they know in advance that they are going to keep it. When the collection first arrives at the lab, it is passed through a cell counting machine. Only collections that have at least 900 million nucleated cells are kept. As a result, over 60%-80% of cord blood donations are discarded. The public bank must absorb the expense of the collection kit and delivery charges for discarded blood; typically $100 per unit.
You can also support your local research and academic institutions that are accepting cord blood donations. Stem cell research has become a provocative debate because of the ethical disagreements around embryonic stem cells. UCB avoids the debate entirely while still providing valuable stem cells in the quest to cure disease and mitigate human suffering.
Research on stem cell transplants began in the 1950s, with successful bone marrow transplants occurring in the 1970s, often to treat cancer patients whose own bone marrow was destroyed by chemotherapy and radiation. The first successful umbilical cord blood stem cell transplant was reported as occurring in the late 1980s. The recipient was a 6-year-old American boy from North Carolina who was treated for Fanconi’s anemia (a genetic disorder) at Hospital St. Louis in Paris, France, using cord blood obtained from his younger sister’s birth. Interestingly, more than 20 years after the transplant, this young man is alive and well. Not only did he survive long term, but both his immune system and his blood were transformed by the transplant of his sister’s cord blood stem cells. Soon after this first documented cord blood stem cell transplant, the first public umbilical cord blood bank was established in 1991 in New York (McGuckin & Forraz, 2008).
When researching cord blood banks, make sure they’re registered with the Food and Drug Administration (FDA), and comply with FDA regulations including current good tissue practice regulations, donor screening and testing for infectious diseases. Check for accreditations with American Association of Blood Banks or the Foundation for the Accreditation of Cellular Therapy. Other factors to consider are the bank’s shipping and delivery methods, clinical experience, processing options, payments and costs.
We believe that every family should have the opportunity to preserve their baby’s newborn stem cells. That’s why CBR offers transparent costs of cord blood banking, and various payment options to fit this important step into almost every family budget.
Since 1988, cord blood transplants have been used to treat over 80 diseases in hospitals around the world. Inherited blood disorders such as sickle cell disease and thalassemia can be cured by cord blood transplant. Over the past decade, clinical trials have been developing cord blood therapies for conditions that affect brain development in early childhood, such as cerebral palsy and autism.
If you want the blood stored, after the birth, the doctor clamps the umbilical cord in two places, about 10 inches apart, and cuts the cord, separating mother from baby. Then she inserts a needle and collects at least 40 milliliters of blood from the cord. The blood is sealed in a bag and sent to a lab or cord blood bank for testing and storage. The process only takes a few minutes and is painless for mother and baby.





To explain why cord blood banking is so expensive in the United States, we wrote an article with the CEO of a public cord blood bank that lists the steps in cord blood banking and itemizes the cost of each one.
Wagner JE, Rosenthal J, Sweetman R, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood.1996;88 :795– 802
For families that choose to bank cord blood, the American Academy of Pediatrics (AAP) recommends public cord blood banking. Estimates vary, but the chances of a child having a stem cell transplant, with either bone marrow or cord blood, are 1 in 217 over a lifetime. Although the AAP states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does decide on cord blood banking, the AAP recommends public cord blood banking (instead of private) to cut down on costs. If you donate cord blood and your child eventually needs it, you can get it back as long as it hasn’t been discarded or used.
Advertisements on this site are placed and controlled by outside advertising networks. ConsumerAffairs.com does not evaluate or endorse the products and services advertised. See the FAQ for more information.
The potential powers of these cells have researchers excited. But what that scientific hope means for expectant parents facing decisions about cord blood banking is far from clear. For all of the promise, there are lots of reasons why umbilical cord cells may turn out to be less useful than thought. Read my next post for more about these potential drawbacks.
One of the factors that influence engraftment time is cell dose (Gunning, 2007). Cell dose is directly related to the volume of umbilical cord blood collected. Cell dose refers to the amount of useful stem cells in the sample of blood. Because of the limited volume of cells collected from cord blood, the amount of stem cells in cord blood is approximately 10% less than the amount obtained from bone marrow (Moise, 2005). A single unit of umbilical cord blood usually contains 50 to 200 ml of blood (Gonzalez-Ryan et al., 2000). If an amount of cord blood is less than this minimum volume, the unit is discarded as being unsatisfactory because the cell dose of the sample would not be high enough. Collecting an insufficient volume of cord blood occurs in about 50% or more cases of cord blood collection (Drew, 2005). In general, fewer stem cells are needed for cord blood transplantation, and usually a volume of 50 to 100 ml of cord blood will provide enough of a cell dose for a child or small adult. However, should the recipient need additional stem cells, it is impossible to obtain more stem cells from the infant because the cord blood volume is a limited amount (Percer, 2009).
According to the statement, “Families may be vulnerable to emotional marketing at the time of birth of a child and may look to their physicians for advice. No accurate estimates exist of the likelihood of children to need their own stored cells. The range of available estimates is from 1 in 1,000 to 1 in 200,000.” For this and other reasons, it is difficult to recommend that parents store their children’s cord blood for future use. The AAP policy states:
CBR’s quality control team performs over 5 million sample checks per year which includes 3 million temperature checks, 20,000 environmental sterility tests, and 95 control checks on each sample to ensure processes are working correctly so that your family’s stem cells are kept protected. At CBR we take the safe storage of your stem cells seriously.
Umbilical cord blood transplants are now used to treat numerous types of immune- and blood-related disorders and genetic diseases. Cord blood (CB) banks play an important role in these transplants by processing and storing CB units. In addition to their therapeutic potential, these banks raise ethical and regulatory questions, especially in emerging markets in the Arab world. In this article, the authors review CB banking in five countries in the region, Jordan, Saudi Arabia, Egypt, Qatar, and the United Arab Emirates, selected for their different CB banking policies and initiatives. In assessing these case studies, the authors present regional trends and issues, including religious perspectives, policies, and demographic risk factors. This research suggests strong incentives for increasing the number of CB units that are collected from and available to Arab populations. In addition, the deficit in knowledge concerning public opinion and awareness in the region should be addressed to ensure educated decision-making.
The syringe or bag should be pre-labeled with a unique number that identifies your baby. Cord blood may only be collected during the first 15 minutes following the birth and should be processed by the laboratory within 48 hours of collection.
Cord tissue contains a special type of stem cell that has the potential to treat injuries and diseases affecting cartilage, muscle, and nerve cells.19 Since 2007 there have been about 150 clinical trials that have used cord tissue stem cells in human patients.
Most stored cord blood is discarded. At public cord blood banks, a unit of stored cord blood has a greater chance of being used to help a sick child or used toward stem cell research. Private cord blood banks, on the other hand, eventually throw away blood that a family no longer wants to store or use.
An alternative to a related donor involves seeking unrelated HLA-matched adult allogeneic donors outside of the family.2,6,11 There are more than 7 million potential unrelated volunteer adult donors registered in the National Marrow Donor Program registry.17 Although the number of patients who receive unrelated adult allogeneic donor stem cell transplants continues to increase each year, many patients are unable to find a fully matched donor, which diminishes access to transplantation therapy. Nonwhite patients have a lower chance of identifying a fully matched unrelated adult donor because of genetic heterogeneity and lack of nonwhite donors. Over the past decade, unrelated-donor, banked umbilical cord blood has been shown to contain sufficient numbers of stem cells for successful transplantation between unrelated, partially HLA-mismatched individuals.19–23 With advances in the clinical practice of cord blood transplantation, most patients unable to find a fully matched adult donor can identify a partially matched cord blood donor.
Just like other blood donations, there is no cost to the donor of cord blood. If you do not choose to store your baby’s blood, please consider donating it. Your donation could make a difference in someone else’s life.

Leave a Reply

Your email address will not be published. Required fields are marked *